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ABSTRACT 

~....Ll .... e perfonnance of a network, in context of throughput overflow 

een two nodes needs to be passed through one or more alternate 

recent literatures, alternate path is mostly analysis done based on 

. ~ t Random Theory (ERT), extended ERT and cost optimization 

__ """"- _ .e. In this thesis, we apply the concept of Automatic Repeat Request 

- heme of wireless communications in alternate routing traffic to get 

- :::1>-'--_'" rate Transition chain. Finally the state transition chain is converted 

_ '::- -ta e transition chain is converted to 2-State Markov Modulated 

';a;....~ Process (MMPP) to determine perfonnance of the network in tenns 

_ :> traffic parameters. 
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niew 

Chapter 1 
Introduction 

~a::::~: ,- a key element of any communication network functional structure, which has a 

Z:::~=: impact on network traffic performance and cost. A routing method is primarily 

.::::E:r:!::=-_ with the definition of a route, or set of routes, between a pair of nodes satisfying 

_ timality criteriaJn communication system, alternative routing or alternate path is 

transfer excess traffic. It makes overflow systems reliable and thereby reduces the 

..:i:y of congestion. Because these networks carry large amounts of traffic, alternate 

-'-'"_-:::~ methods are designed in order to allow traffic to be properly re-routed from source to 

........,"--" ....... on in the event of certain events, such as link blocking or failure. 

---...ate path analysis is mostly done based on Equivalent Random Theory (ERT), extended 

--; - md cost optimization technique. In our thesis, the concept of alternate routing traffic is 

_ ' cd to get 4-state State Transition chain. After that,3 nodes of 4 states are super-posted in 

:: e. Finally the state transition chain is converted to a 2-State transition chain is 

e-r:ed to 2-State Markov Modulated Poison Process (MMPP) to determine performance 

etwork in terms of MMPP traffic parameters. 

_ ~oy-Modulated Poisson Process (MMPP) is a state dependent arrival process which is 

"'. _' stochastic process where the intensity of a Poisson process is determined by the 

. : ;hases) of a Markov chain. The Markov chain can therefore be said to modulate the 

- - ?iOCeSS which is also a stochastic process in which events/arrivalslbirths/calls occur 

· ..... L~.;..;;u,.L.:>ly and independently of one-another. This modulation of MMPP introduces 

ns between successive inter-arrival times in the process. The MMPP can be 

~~-.l.l-ed as a special case of the Markovian arrival process (MAP). The main advantage of 

:: _ [\fPPs as traffic models is that they helps to provide better analysis than some 

.::t=:",:~'lJ1g models. Important properties of queuing systems like MMPP/G/I can be, not very 

: _ erived. Because of its tractability it is widely used for modeling bursty traffic such as 

""""'-zed voice in the ATM. 
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AJternate Routing Traffic 

'".::en traffic can't be served by the initial trunk group attempted, some networks support 

-=r:aative trunk groups as overflow groups. The design problem is that the traffic to the 

=:-flow group is no longer random, causing peaks of activity. There are several models of 

__ -;;mate Routing traffic like as on Equivalent Random Theory (ERT), 

-::., basis of ER T is that peaked traffic can be modeled as overflow traffic from a trunk group 

.-r. has been offered random traffic. What is needed then to estimate the original offered 

_ :::nc from the overflow traffic erlangs. 

~e problem is to determine the number of trunks required, when the traffic is peaked, i.e. a 

-: m ance To Mean Ratio (VMR) greater than 1. The VMR measures traffic peakedness. It is 

:;~cularly useful for calculating skewness of nonrandom traffic (e.g., overflow route traffic) 

:- is obtained with the ratio of variance of the offered load to average of the offered load. 

solution was a model better than Erlang B, designed to solve trunk sizing when the 

::-affic is random (VMR=1). 

=onsider the following figure, Random traffic is offered to a first attempt trunk group, some 

~ : most is carried, and the rest overflows to the overflow group. What is known is the 

yerflowed amount, but what is needed to be known is the original offered load. 

2 



Random 
t raffic 
vmr= 1 

Fit'st choice 
trunk groups 

Overflow 
traffic 

VIDl'> 1 

Overl'low 
·t~ks 

Fig.1.1 ERT Concept Flow Chart 

Overflow 
traffic 

~quivalent Random Theory model reqUires the VMR of the offered traffic to be 

..... __ ~..::;eQ If the offered traffic is overflow from a trunk: group that has been sized using the 

-'--~~ B model, the following relationships apply: 

.7rjlow = E(A, N}x A 

e - of -Overflow=AvgX(l-AVg+ A J 
N +l+Avg-A 

Where, E(A,N) = Probability of blocking from Erlang B model 

A = Offered Traffic 

N = Number of Trunks 

A vg = A vg of Overflow Traffic 
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aotage of MMPP traffic model 

-"'~~~ ;-modulated Poisson Process (MMPP) is a doubly stochastic process where the 

~:::::S::: ... ' of a Poisson process is defined by the state of a Markov chain. The Markov 

therefore be said to modulate the Poisson process. This modulation introduces 

os between successive inter-arrival times in the process . 

. _ iPP can be identified as a special case of the Markovian arrival process (MAP). 

advantage of using MMPPs as traffic models is that they helps to provide better 

- than some competing models. Important properties of queuing systems like 

~? Gil can be, not very easily, derived. Because of its tractability it is widely used for 

- ,iag bursty traffic such as packetized voice in the ATM. 

_ lAP classification: 

- y arrival process 

:- the major drawback Markov chain lies in incorporation of large number of probability 

"'" . -hich complicates the analysis traffic parameters of a network. Markov arrival process 

rovides and equivalent state transition chain of few probability states with some 

prion [1] . 

J!'''':: oosider a CTMC of states S = {l , 2, 3, ... , N} to be irreducible, stationary and time 

'......--·~.:e eous. The Markov chain stays in a state i E S for an interval follows negative 

=..ential pdf with a mean value of lip.; (p; is the termination rate of state i). After elapsing 

_ .u. time in state i, the process makes a transition to another state j E S with probability cij 

-- ~ of without arrival or with a probability dij for the case of with arrival. In this case, 

-' : - I d . . = 1 for i E S 
- .' j ES 1,J 
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-OY arrival process of order N, MAP(N) is defmed by two NxN matrices C and D. Here 

..: a non negative matrix which corresponds to transition rates of states (N states) of 

- ground CTMC associated with arrival. The matrix C correspond to transition rates 

- ut arrival where C has negative diagonal elements and nonnegative off-diagonal 

ents. If 1t is the stationary probability vector of the underlying Markov chain then, 

C+D)=O and 1t.e=1; where e is a column vector whose all elements are one. The element 

of C matrix, 

_ {-Pi; for i = j . 
- )' = 0 h . and the element of D matnx, Dij=dijf.J.i' . p.c..; t erwlse 

1 l,j 

=- "'t us consider a continuous time Markov process with state space {I, 2, 3 , ... , m+ 1} where 

-. s 1, 2, 3, 4, ... m are transient states and m+ 1 is the absorbing state. Starting from any 

~ .: re i, the process must enter to the absorbing state m+ 1. The process upon entering the 

:;sorbing state, it instantaneously jumps to a transient sate j, j=1, 2, 3 , ... , m. Let PiJ be the 

:_ bability that the process enters the absorbing state from state i and is immediately restarted 

~ state j, 1~i, j~m and qiJ be the probability that the process enters another state j from i, 

' thout being absorbed satisfies, 

"n m 
~q . . + "p . . =1' l<i<m Ij L.. lj ,--
~l' . 1 ' . = . J= 
= 1 

..::. this case The element Cij of C matrix, 

{

- Pi; for i = j 
C; J. = 0 h • and the element of D matrix, DiJ·=Pijf.J.i. . . p.q..; t erwlse 

1 l,j 

. {arkov Arrival Process (MAP) can also be defined as a process (N(t), J(t)) for t~ on the 

~e space {(i, j); t~O, l$Yn} where N(t) is a counting process of "arrivals", indicated the 

ber of arrival in (0, tJ and J(t) is a Markov process with a finite state space, l~j(t) ~ n of 

'" underlying Markov chain [2]. 
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1!I:m:u:.~." :) . state J(t) and impact of Dij and Cij on MAP can be understood quite comfortably 

_""""'--~""_ using the line diagram of fig. 1. 

n 

I rr r 
Fig.1.2 Markov Arrival Process 

_.~-\P possesses the property of superposition i.e. superposition of n independent MAPs 

Di : 1 ~ i :s n is another MAP where C and matrix D matrices of resultant MAP are, 

'=C -s C_ EB ... EB Cn and D=Dl EB D2 EEl ... EEl Dn ; where EEl denotes the matrix Kronecker 

- :IDed as, A EB B= A ® IA + B ® IB; Ix is an identity matrix of size X. The Kronecker 

"'-' ....... -= .. engineering adopts three most widely used cases of MAP are: PH Markov renewal 

?H-~fRP), Markov Modulated Markov Process (MMPP) and Batch Markovian 

~ -. (BMAP). 
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Phase-type Renewal Process 

...::. :onsider a continuous time Markov chain with state space {O, 1, 2, 3, ... , m} where 

: . _, 3, 4, ... m are transient states and 0 is absorbing the state. Assume the process 

::::::ering the absorbing state, it instantaneously jumps to transient sate j, j=l, 2, 3 , ... , m 

Oability Uj and independent of its state immediately before the arrival; where Uj is an 

,-=~:: of probability the vector a. A PH-renewal process is represented as PH(a, T) where 

:n m transition matrix (the matrix of transition rates among the phases or states, T is 

;:W i.e. rl exits) and the row vector a with component Uj is called the initial 

JlCr.:::J ~' vector [3-4]. A column vector TO is defined as, TO=-Te; represents the transition 

transient states to the absorbing state (TO represents the vector of transition rates 

-- ~ :ransient sates {I, 2, 3, ... ,m} to the absorption sate 0), where e is the unit column 

all components equal to 1. 

m 
phase probability distribution be (ao, a) = (ao, ai, a2, ... , am) where Lai = 1 

i=O 

. - 'tesimal generator be Q. PH distributions are modeled as the time until 

a Markov Process with a single absorption state. The random variable U, 

*!im::s _ -'-", time absorption (U=time until absorption), is said to have a continuous phase­

......... -...._··.=ion. The infinitesimal generator for the Markov chain can be written in block-

I 

::a vector of zeros, T=[Tij} is am Xm matrix following, 
p 

->I) and "T .. ~ 0 " 1 < i < m "- - L. lj - -
j=1 
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ii) Tii<O and 
P 

T .. <-"T .. 
II - ~ l) 

j=1 
j:t:.i 

iii) To = -Te where e is a mx 1 vector of ones. 

-=ne PH distribution is said to have a representation (a, T) of order p. The distribution 

:Unction of (a, T), 

u=O 

u>O 

Differentiation w.r.t. u the pdf, 

feu) = -ae TUTe 

PH renewal process with representation (a ,T) is a MAP with, D=(-Te)a and C=T. The 

phase-type renewal process contains many familiar arrival process including Erlang and 

hyper-exponential arrival process. 

Case-1 
Let a = [1] and T = [-A] 

:. feu) = Ae -AU becomes the pdf of negative exponential 

Case-2 

-~ 0 

0 -~ 
Let T= 

0 0 

0 

0 

-A p 

a=(a , 1 a2 a p ), a>O and fa. =1 
I • 1 1 

1= 

The pdf becomes, feu) = faiAie -"i
U 

known as hyper exponential pdf. 
i=! 

Case-3 
-A A 0 ... 0 

0 -A A ... 0 
, a = (1 0) Let T= 0 ... 

0 0 -A 

0 0 0 -A 
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feu) 
= },,,P UP-I e -A u 

-=::e pdf becomes, known as p-phase Erlang pdf. 
p! 

1.4.2 Batch Markov Arrival Process 

The Batch Markovian Arrival Process (BMAP) is a special case of MAP which has arrivals 

of size greater than one. In BMAP several paths exists between state i and j, The transaction 

from any state i to another state j E S={O, 1, 2 , ... , N} depends on the size of arrival (batch 

size). Let us consider a continuous-time Markov chain of N+1 sates, S={O, 1, 2 , . .. , N} , 

where the states L = {1, 2, ... ,N} are transient states and state 0 is the absorbing state. The 

system of CTMC evolves until the system falls in the absorption state, O. After absorption the 

chain is then instantaneously restarted in one of the transient states L = {1, 2, ... ,N}. Let the 

BMAP (after absorption) starts from a transient state j, the probability for selecting the state j 

depends on the state i from which absorption has occurred. Thus the distribution of next 

arrival may depend on previous history [5]. 

Let the BMAP of M+ 1 different possible batch size and it is in a transient state i. When 

sojourn time of the state i is elapsed then there are M+ 1 possible cases of making a state 

transition. The probability P(mJiJ indicates that the BMAP enters the absorbing state 0 from 

the state i and instantaneously restated in state j with batch size m (1 ~ m ~ M). Similarly the 

probability P(OJiJ indicates· that the BMAP enters the absorbing state 0 from the state i and 

instantaneously restated in state j, ii-j, without arrivals. 

9 



00 

- m) satisfies, L If J'(O) + L L p .. (m) = 1 for alljES 
jES' jES m;el l,J 

j;ei 

:-:ere D(O)iJ=Ai.P(O)iJ for #j, D(O)i.i=-Ai and D(m)iJ=Ai.P(m}iJ. In a BMAP, D(O) is the rate 

:::.atrix of transition without arrival and D(m) is the rate matrices of transition with arrival of 

_ ch size m. 

:be matrix D(O) has negative diagonal elements and positive off-diagonal element and 

::natrices D(m) have non-negative elements [6]. The summation of D(m) provides the 

00 
:nfini.tesimal generator matrix, D = L D( m) . 

m=O 

et 1t be the stationary probability of the Markov process then 1tD = 0 and 1te = 1; where e is 

column vector of 1 's and 1tj is the stationary probability that the arrival process in state j. 

The stationary arrival rate of the process, A=1t~mD(m).e. 
m=l 

The cumulative distribution function of the inter-arrival time for the batch size mis, 

F(t)= 1t(1-eD(O)~(-D(O)rl.D(m).e 

1.4.3 Markov Modulated Poisson Process 

_ tarkov Modulated Markov Process (MMPP) is a doubly stochastic process whose arrival 

rate is given by A[J(t)]~O where J(t), t~O, is an m-state irreducible Markov process. The 

:mival rate A(t} at time t is modulated by the CTMC J(t) i.e. if J(t) is i, then the arrivals are 

:.ording to a Poisson process with rate Ai. The arrival rate takes on only m values AI. 1.,2, ..• , 

10 



. ...., and equal to Aj whenever the Markov process is in the state j. If the underlying Markov 

;'IOcess has infinitesimal generator Q of dimension m and a diagonal matrix of same 

.:imetion, A=diag(AI, A2, ... , Am) then we can consider Markov Modulated Markov Process is 

:he special instance of an MAP with C = Q- A, D = A. We use (Q, A) to represent the 

~1MPP. Let us consider the transition and diagonal matrix of dimension m, 

qll ql2 qlm ~ 0 0 

q21 q22 q21m 0 ,.1,2 0 
Q= and A= 

0 0 0 

qml qm2 qmm 0 0 0 Am 

Probability state J(t) and impact of qij on Ai of MMPP can be understood quite comfortably 

including using the line diagram of fig.2. 

J(t) n 1 

Fig.1.3 Markov Modulated Poisson Process (MMPP) 

Let Nt denote the number of arrivals in [O,t] and for k2:0, 1 ~ i, j ~ m, Pij(k,t)=P{Nt= k, Jt= jl 

No= 0, Jo= i}. 

11 



Example-l (MMPP) 

Consider a superposition of N independent on and off sources; where J(t) is the number of 

active sources at time t and when the state is k, arrival rate is kA. The arrival process is, in 

fact, an MMPP with (Q, A) 

(N-l)O"s 

(N-I) O"a 

Fig.1.4 Markov Chain 

o 0 0 0 

o A 0 0 

A= 0 0 2A 0 

o 0 0 NA 

-NO' s NO's 0 0 0 0 

O'a -(O'a +(N -l)O's) (N -l)O's 0 0 0 

Q= 0 20'a -(20'a +(N -2)O's) (N -l)O's 0 0 

0 0 0 0 NO'a -NO'a 
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1..5 Objective of this Thesis 

':::-' e goals were to be achieved throughout this project are as follows -

• Learn the basic of Alternate Routing for a overflow traffic exchange 

• To implement the Markov Chain in Alternate Routing Traffic 

• To convert the Markov Chain to the 2-State Markov Modulated Poisson Process 

• To determine the under-loaded & overloaded condition of a super node with the 

condition state transition of nodes 

• Also to determine performance of the network in terms of MMPP traffic parameters 

1.6 Introduction to this Dissertation 

Chapter one is the introductory chapter where project overview and benefits of Alternative 

Routing. The objectives of thesis are also described. 

Chapter two includes a small introduction on traffic model of alternate route network. 

Followed by, a brief description of State Transition chain of Alternate route traffic total with 

the model of packetizing process. 

Chapter three is the result analysis of under-loaded & overloaded condition of a super node 

with the condition state transition of nodes using MMPP traffic parameters. 

Chapter four is discussed all about the future works based on this project with limitations & 

conclusion. 

13 



Chapter 2 
Traffic model of alternate route network 

1.1 Alternate Route through Tandem 

T a multi-exchange area, adjacent nodes are connected directly by high capacity links. To 

enhance reliability, all the nodes of the exchange are connected through a Tandem Exchange. 

direct link fails to carry the offered traffic, the Tandem Exchange is used as an alternate 

route to carry overflow traffic. 

T 

M 

A(t) 

Fig.2.t Alternate Route through Tandem Exchange 

Let, Poisson's traffic ACt) is offered at node X destined for the node Y. The overflow traffic 

M is routed through the Tandem Exchange T in the Fig.t. Here, the both X and T has some 

overflow traffic. 

The offered traffic ACt) at node X is a random variable which follows negative exponential 

(e -x) probability density function (pdf). The node X remains in under-loaded condition 

when A(t) :$; Ath , where Ath is a threshold value of the offered traffic ACt), determined from 

long term observation of the network. From Wilkinson formula, the mean and variance of 

overflow traffic of link XY are 

14 



M = ABn(A) , 

V=M I-M+ , ( A ) 
n+l-A+M 

Where n is the number of trunks between node X and Y, B n (A) is the blocking probability of 

the link. 

The overflow traffic M is carried by the link XT . The mean and variance of the overflow 

traffic oflink XT is the lost traffic whose mean and variance are m and v respectively. 

The condition of the node X, at time instant n = k , can be expressed as 

{
G, if A ~ Ath 

X(k) = B, if A> A
th

. 

Since the offered traffic of the tandem exchange is M, therefore, condition of the node T, at 

time instant n = k can be expressed as, 

{
G, if M~Mth 

T(k) = B, if M M 
> th' 

Where Mth is the threshold value of the overflow traffic of link XY. Mth can also be 

determined from long term observation of the network. 

2.2 State Transition chain of Alternate route traffic 

Let us consider that the call arrival rate of node X during under-loaded and over-loaded 

conditions be AXU and AXorespectively. The rate of transition from under-load to over-load 

is 'IX and that of overload to underload is'2X. The identical parameters are used for 

tandem node T but subscript is used 'T instead of 'X'. Now the state transition diagram of 

node X and T are shown in Fig. 2.2 and Fig. 2.3. 

15 



Fig.2.2 Transition from underload to overload for destined node X 

Fig.2.3 Transition from underload to overload for Tandem node Y 

The combined state transition diagram of alternate path traffic model will take the form of 

fig.2.4 

Fig.2.4 Combined State Transition Diagram 

16 



- --- -- - - - ----------

Let us convert the state transition diagram of Fig. 2.4 of 4-states to an equivalent state 

;:ransition model of 2-states, like Fig. 2.5 by superposing all 3 nodes related to overload state. 

Fig.2.5 Equivalent State transition diagram 

Where Au = A Xu ATu 
Ao = AxoAru + AxuAro + AxoAro + r' Xr2T + r2Xr'T + r,xAro + r2X Aro + Axor'T + Axor2T 

r1 = AXu r1T +r1Xr1T +r1XAru 

r2 = AXur2T +r2X r2T +r2xATu 

From the 2-state MMPP ofFig.2.5, Let us determine transition probability matrix, 

Let, here p be the steady state vector ofT, where both C & D are M x M matrices, C has 

negative diagonal elements and non-negative off-diagonal elements and D has non-negative 

elements. C & D can be represented as follows: 

where Au > Ao and the state transition diagram including arrivals for the MMPP (2) in the Fig. 
2.5. 

Therefore, 

17 



'ch implies 

="et us, determine Eigenvalues 0"1 and 0"2 of T matrix are 

a l =1, 
:md 

=..et us, determine auto-covariance function 

,,-here 

(AuAo + Au'2 + Ao'l) 
-(Au +'l)Ao 

C[ k] = pC-2 D(T k
-

l 
- ep )C-2 De 

~odulation of MMPP introduces correlations between successive inter-arrival times. Now, 

the mean inter arrival time m of MMPP parameters, for J(h moment in generalized form, 

The arrival rate is the number of calls that will arrive at a facility during a finite time period. 

The Greek letter lambda (A) is generally used to represent arrival rate. The arrival rate under 

overload condition can be determined using, 

o 
L k· g[k] 

Au = ~k_=w;;...o---

L g[k] 
k=w 

Where g[k] = Pr {N = k}, k=O, 1, 2 .. ..... 

18 



~e J(h moment, mk , & auto-covariance function, C[k] are all known statistical parameter of a 

~.3tem from its long term observation. From above relations r/,r2, Au, Ao can be determined. 

:Iere, for steady state vector p, we know 

_T=p 
Je = 1 

?rom these to equations, the steady state vector can be determined by following 

For k = 1 , the value of mk should be as follows, 

~A~ ~J(l+l) .[~ ~H:] 

~A~ ~rJ .[~:] 

2 

19 



.[~:] 
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So the 15t inter arrival time from the above equation is 
(r\ + r2 ) => m \ = ----'---'--------=-":"'-

AJ2 + AOr\ 

2.3 MMPP traffic parameter using Modeling of Packetized Process 

As we know the multi-media inputs like voice, data, image, etc are integrated in the form of 

packets in ISDN. And the packet is in general of variable length, in the standard packet 

switching system. On the other hand, it becomes a fixed length cell in the ATM for 

broadband ISDN. In such systems, real-time voice or video is delay-sensitive; whereas data is 

lo-sensitive and their performance evaluation is an important problem. Since the packetized 

process has a bursty nature, the superposed process from multiple sources becomes non­

renewal and analyses using the MMPP have been widely applied. 

A model for packetized voice is shown in figure 2.6 which is often referred to as the ON-OFF 

model. In a single voice source, it is assumed that voice spurt and silence periods are 

exponentially distributed with mean a-I and fJI, respectively, and packets (cells) are 

originated in a fixed period T during the voice spurt. 

-, ~ T 

~-".l4-I"---rrl ) 

n 

Figure: 2.6 ON-OFF model for packetized traffic 
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For the arrival process of the single source, the arrival rate ).a, SCV (varianc/mean2) C/ and 

skewness (third central moment/variance 3/2) Sk are given by 

A = {3 
a r(a+{3) 

c2 = l-(l-arf 
a r2(a+pf 

Sk = 2aT(a
2
T2 - 3a~ + 3) 

aT(2-aT)z 

We can determine the parameters in terms of Ao ' C~ and Sk 

C == (S2 + 18\r.6 -12S C5 -18C4 +8S C3 +6C2 -2 k !--,o k 0 0 k 0 0 

The arrival rate for single source, An = nAa 

Let, 

1 1 
T=16, a= 352 ' {3= 650 & n=120 

Sk =9.838 C~ = 18.0950 

Now, Co = ~c~ :. Co = 4.254 

So, 

C == (S2 + 18\r.6 -12S C5 -18C4 +8S C3 +6C2 -2 k !--,o k 0 0 k 0 0 

Croat = rc 
:. Croot = 718.28 
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:.AHl =1.528x10-3 

:.k
H 

= 0.046 

AH2 = [AaAHI (k H -1)] 
[kHAa -AHl ] 

:.AH2 = 0.061 

:. kH . AHI = 6.978 x 10-5 

:. QO = 0.058 

I _ primeO = Qo - Aa 

Aa =0.022 

=> I . = 0 036 _ prIme 0 . 

I inf " = C 2 
_ mite a 

~ I _ infinite = 18.095 

~ S _ inf inite = 225.035 

D = I primeO 

I . -I 
_ inf inile 

~D=2.12x10-3 
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F = [D. (S _inf inite- 3 • I _inf inite 2 )] 

3· I _inf inite -1 

E = I primeO 

F2 
=> E = 710.799 

An = 2.635 

a =An·E 

=> a = 1.873 x 103 

=> '2 = 2.071 x 10-3 

Au =An +F+(F.~) 
=> Au = 2.951 

Ao =An +F-(F.~) 
=> Ao =2.333 
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Chapter 3 
Result 

3.1 Result of interarrival time distribution function 

Analysis of under-loaded and over-loaded condition of Super node 

t = 0,0.2, ... 5 

'1 = 2.169x 10-3 

Au = 2.951 

(
-A -r C= u , 

'2 " J -A -r. a 2 

eigenvals(C) = (- 2.953J 
-2.335 

eigenvecs(C) = 
( 

1 3.509

1

XIO-
3J 

-3.351xlO-3 

U1 =1.228 

U2 = 2.272 
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e -Ull _ e -U21 

aj(t)=---
U 2 -Uj 

Now, the probability matrix, 

F{t} = {! -W{t}}.{-Ct·D 

• .1 .. 
1 r-------~--------~------~ 

0.5 

W(t)o,O 

o 

... - 0.049 7 0.5 
o 1 2 3 

... 0 .. t ..3 • 

1048 1.5 . . ~ 

F( t)o ,0 

F(t)O,l 

F( th ,0 
0.5 

/ 

F( th ,1 

0 

- 0.5-0 5 . 0 3 

Figure3.1 Interarrival time distribution functions 
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3.2 Analysis of time dependant state probabilities for finite-state 
systems: The classical eigensystem analysis 

For the finite Markov Chain, the infinitesimal generator matrix, 

Now, eigen vector of matrix Q, M = eigenvecs(Q) 

And eigen value of matrix Q, Y = eigenva!s(Q) 

t = 0,0.2, .. 3 

DiaV) = (e:-' .?_,] 
The row vector of state probabilities, 
p(t)=(O l)·M . Dia(t).M-1 

1 

S(t) = IP(t)Oi 
i=O ' 

R(t) = p(t) 
S(t) 

For some discrete values of time, we get the graph for the under-loaded & over-loaded 
conditions of the super node. 

2 
10.-----~----~----~------r-----,------, 

0.1 

R{ t)o .0 

R{t)o .1 
0.01 

1 ,10-3 

,2.011 x 10- tlO -.s 
o 3 

,0. 

Figure3.2 Time dependant state probabilities 
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3.3 Determining the results with different parameter values 

By considering different sampling period, ON-OFF parameters and same number of voice 
circuits we have assumed the MMPP traffic parameters below: 

A} =1.2 1...2 =1.3 f}=O.3 f2=O.7 

.1 ... 
1 r-------.--------.------~ 

W (t>o,o 0.5 

t 

.0.859 ~ 
l.-------.-------.-------.-------r-------, 

0.8 

F(t)~,~ 

F(t) 0.6 
~,I 

0.4 
F(t)I,1 

.o~ 

---~---

4 5 

_5. 

,I~ 
I ~~----.-------.-------.-------.-----~ 

- .... - ................................ . 

0.1 

R(t)o II 

R(t)o I 

ODI 

.6 965x I~ .10 -3 
o 3 4 

.o~ t 

Figure3.3 Interarrival time distribution functions and time dependant 
state probabilities for different set of parameter values 
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4.1 Conclusion: 

Chapter 4 
Conclusion 

We have used MMPP(2) alternative routing traffic model as MMPP is widely used for 
analyzing bursty nature of packetized process. Bursty traffic has packets of variable lengths 
in standard packet switching system where data is loss sensitive and delay sensitive. 

We can say from figure3.1 that interarrival time distribution functions that represent state 
transitions from underload to overload and from overload to underload has same 
probabilities, which is zero, from the beginning of the network's functionality. On the 
contrary interarrival time distribution functions that represent self transition have slightly 
different probabilities at the beginning of time but as time approaches forward the functions 
converge. These two functions also represent different slopes of probability increments at the 
beginning where underload-underload reaches to probability one faster than that of overload­
overload. 

Moreover from figure3.2 we've drawn our conclusion that time dependant state probabilities 
for underload-overload state remains one from starting of the network and the same function 
for underload-underload state slowly reaches to 1 as time increases. 
Similarly from figure3.3 we've got different performance curves for different voice circuit. 

4.2 Future Work 

Our future target is to apply another method to analyze time 
dependant state probabilities using "RANDOMISATION" approach 
Which is also called "Jensen 's Method" 
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