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Abstract

Before the advent of medical imaging, palpation was one of the main methods to detect
abnormalities in the body, mainly because the mechanical properties of diseased tissue are
typically different than that of the healthy tissue surrounding it. Utilizing the same concept of
palpation now ultrasound elasticity imaging technique is a promising new tool for cancer
diagnosis and management. Ultrasound is applied to sense small local tissue deformations
noninvasively to image stiffness and thus exploit the large intrinsic stiffness contrast generated
during the progression of many diseases. Elasticity (strain) images are generally computed by
measuring the local deformation due to the controlled application of static tissue compressive
force. Local deformation is estimated by two techniques. One is correlation technique and
another 1s compression technique. Correlation based strain 1maging is efficient in cancer
detection for its simplicity and lower cost but large displacement estimation error occurs in this
technique. Therefore, in our thesis we investigate direct compression technique for strain
imaging that provide significantly better image for cancer detection. But compression technique
has a limitation 1n cancer detection which is computational cost. Computational cost 1s higher in
compression technique. To overcome this limitation we apply frame wise compression technique
which made the algorithm faster. In our work, we construct an elasticity image from the radio
frequency ultrasound signals acquired before and after applying a physical pressure in the region
of interest. We observe that, normal B-mode image cannot detect the cancer or hard tissue
surrounding by normal tissue. On the other hand, strain image can detect cancer or hard tissue
surrounding by nomal tissue. For this reason people are trying to incorporate strain imaging
technique 1n ultrasound equipment commercially. Therefore strain/elasticity imaging 1S now

showing potential in early cancer detection.
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Chapter 1

Introduction

1.1 Motivation

According to the American Cancer Society, more than 1.3 million new cases of cancer will be
diagnosed, and more than half a million are expected to die of cancer - more than 1,500 people a
day [1]. Every week around 10,000 people die of cancer which show the death rate for cancer
deaths can’t change in the last 10 years [2]. As there 1s no recovery from cancer perfectly, so
early stage detection can provide trends to successful prevention. Chemo therapy and radiation
therapy only save around 10% of the people treated and other treatment contribute little bit. On
the other hand 1if cancer 1s not detected at early stage the abnormal cell from which cancer starts
divides into two abnormal cells, then four cells, and so forth means cancer spread throughout the
body and cases early death. Since the early beginnings of medical practice, the estimation of
tissue hardness has been practiced through palpation, i.e. the act of feeling or pushing on various
parts of a patient’s body to determine medical conditions. Palpation has been an important tool to
detect abnormalities in the body, mainly because the mechanical properties of diseased tissue are
typically different than that of the healthy tissue surrounding it. A tumor or a suspicious
cancerous growth 1s normally much stiffer than the background of normal soft tissue [3]. The
basic relationship between tissue elasticity and hardness to palpability then follows the
relationship that in order to be palpable, the object must be harder than the tissue surrounding it.
However in many cases despite the differences in stiffness, the small size of a pathological lesion
makes it harder to detect, and lesions located at deeper depths than the fingers are able to sense
preclude 1ts detection and characterization. Palpation is then hmited to the detection of
abnormalities and tumors which are close to the skin. If cancer is occurs not close to skin surface
that means cancer 1s occurs depth in the body such as occurs in the lever, kidney, lung etc then

manual palpation can to detect the position of the cancer. In addition, other properties have been



associated with diseased tissue, such as water content, acoustic tissue scattering and tissue
density, giving rise to the field of medical imaging that allows imaging diagnosis well beyond
the limits of palpation. Medical imaging systems such as computed tomography (CT), magnetic
resonance imaging (MRI), and ultrasound, are widely used for early detection of cancer.
However, despite the great and ongoing progress in medical imaging, it is recognized that only a
small percentage of cancers can be diagnosed through noninvasive screening. But the detection
of cancer 1s difficult in some cases and also the cost related to detection of cancer i1s expensive.
On the other hand ultrasound based imaging is a simple test to detect cancer tissue and it is an
inexpensive test that doesn't cause any discomfort or anxiety. Ultrasound tests also don't emit any
radiation, so this technique i1s safe for everyone. Ordinary ultrasound has the advantage of
imaging deep inside the body, but 1s virtually unable to differ between tissue of various hardness
and elasticity, and there has been a consistent interest in tissue hardness, motion and vibration
over the years. Tissue elasticity 1s characterized by the amount of tissue displacement or
distortion in response to the application of an external force. Elasticity imaging 1s a method to
remotely estimate elastic properties of biological tissues. Elasticity imaging has for instance been
reported to be useful for the diagnosis and characterization of various tumors, which are usually
stiffer than normal tissue. For example, tumors of the prostate or the breast may be invisible or
barely visible in standard ultrasound examinations, yet are much stiffer than the surrounding
tissue. So in our thesis we choose ultrasound based elasticity imaging technique because by

improving its problem to serve the people to detect cancer at less cost and quickly.

1.2 Prospect of cancer detection using ultrasound based elasticity imaging

techniques

Cancer 1s a class of diseases in which a group of cells display uncontrolled growth, invasion that
intrudes upon and destroys adjacent tissues, and sometimes metastasis, or spreading to other
locations in the body via lymph or blood. So, Cancer is the uncontrolled growth of abnormal
cells in the body. Cancerous cells are also called malignant cells. Cancer grows out of normal
cells in the body. Normal cells multiply when the body needs them, and die when the body
doesn't need them. Cancer appears to occur when the growth of cells in the body is out of control

and cells divide too quickly. Only early detection of cancer improves the trend of successful

[ 8]



treatment and survival. Physicians use information from symptoms and several other procedures
1o diagnose cancer. There are various imaging techniques to detect the cancer. One of these
techniques is ultrasound imaging technique. Ultrasound imaging, also called sonography is a
real-time and relatively inexpensive modality that is widely used in the purpose of clinical
practice. Ultrasound is excellent for non-invasive imaging and diagnosis of various tissue
abnormalities. There are, however, some limitations of ultrasound imaging. Perhaps the most
important one is the ability of ultrasound imaging to identify all abnormalities - there may be low
or no contrast between the abnormality and the surrounding tissue in ultrasound images [4].In
case of cancer changes occurs in the mechanical properties of the tissues. Normal ultrasound
imaging can’t detect the change of mechanical properties (hardness or stiffness properties) of
cancer tissues. So, come out from these types of failure of normal ultrasound we choose the
ultrasound based elasticity imaging technique. Elasticity imaging is a new approach to medical
mmaging. Elasticity imaging, sometimes referred to as "mechanical imaging," is a non-invasive
analysis of tissue movement and displacement so, it is the non-invasive imaging methods based
on the mechanical response of an object to a vibration or impulsive force. Tissue displacement
occurs anytime body tissue moves in response to pressure. As areas of abnormal tissue form
within an organ, the tissue often becomes denser and less elastic. When pressure is applied to
the organ, abnormal tissue and /or cancer cell generally exhibits less displacement than normal
nssue. Ultrasound elasticity imaging is such a technique that emulates palpation. According to
this technique, an ultrasound transducer is used as a remote sensing device to scan an object
within a region of interest (ROI) both before and after compression is applied. The 2-D
displacement function 1s then estimated by comparing the pre- and post-compression scans.
From the estimated displacement function object strain and/or elastic constants can then be
estimated. There are different techniques to detect the cancer using ultrasound based elasticity
imaging. Among these techniques two common techniques are correlation technique and
compression or stressor technique. But compression or stressor technique is better than the
correlation technique, because correlation technique doesn’t perfectly detect the hardness
properties of cancer cell and disadvantage using cross-correlation techniques include the
sensitivity of cross-correlations to amplitude variations in the presence of small signal
distortions. So we chose the compression technique to detect the cancer using ultrasound based

elasticity imaging.



1.3 Principles of elasticity imaging:

The elasticity imaging method is based on extemal tissue compression, with subsequent
computation of the strain profile along the transducer axis. In ultrasound elasticity imaging
svstem two different sets of RF data from the same region of interest (ROI) are collected and
stored. First a conventional scan is made, then the tissue 1s compressed slightly, and another set
of RF signals is collected. Two frames of ultrasound data are then recorded, one before and one
after a section of tissue 1s uniform compressed by a small amount (e.g. with the ultrasound

transducer).

Transducer

(L‘ompressoN
RF {Radio > I

tfrequency)
sienal

Hard or
abnormal ‘;
tissue  — TR s %
LIPS *
_ 29
Soft or i
normal '
fissue

Figurel.1: The principle of ultrasound elasticity imaging. (a) Before compression ultrasound RF

data and (b) after uniform compression ultrasound RF data.

Figure 1.1 shows the general concept behind elastography by showing the example of an applied

compression used to detect a harder lump embedded 1n a softer medium. From the figurel.l see
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that hard or abnormal tissue is less compressed than soft or normal tissue. That means abnormal
nssue 1S harder than normal tissue surrounding them. It is the main point of view in elasticity

imaging system and establishes the relationship between these before and after compression data.

TTtar sound transducer

\L window o block

Precompressed RF data } ﬂ/ Jw ﬂ
vy
Postcompreszsed RF data f -/]/LMWL/UV ﬂ/ \JU\
d

Best matching
posttron {d)

Figurel.2: Matching the pre-compressed and post-compressed data.

In elasticity imaging system, the post-compression RF signal or RF data 1s considered to be a
compressed and shifted version of the pre-compression RF signal or RF data:

Xo®=Xg@-t+t) .....oooo o (L)
Where, Xi(t) = pre-compression signal, X»(t) = post-compression signal, a= amount of

compression and ty= amount of shift.

The strain is derived by analysis of pre-compression and post-compression profile of the axial
amount of compression and shift along the RF signal, and several techniques are available for
estimating the amount of shift and amount of compression in tissues. The resulting tissue amount
of shift and amount of compression between the two sets of RF data is usually tracked by
different techniques. For estimating the tissue displacement a window or block around the
sample range is used to improve the estimate. And find similarity within the sample window or

block between a frame before and after pressure is applied. That means find how much the



signal, 1.e. the tissue, has shifted or compressed for that range in the image as shown in figurel .2.
To observe the similarity or matching between these two data several techniques is used. In these
techniques, the amount of shift and amount of compression between two RF signals, x1(t) and
x2(t) is found by searching the maximum matching position as also show in figurel 2. And also
display the amount of shift and amount of compression image (resulting strain image). This

resulting strain image is called elasticity image.

1.4 Proposed techniques for cancer detection

In this thesis we concentrate on the elasticity imaging, that employ the compression on the tissue
surface. There are several techniques are used to detect the cancer tissue or hard tissue using
ultrasound based elasticity imaging such as Vibration Amplitude Imaging, Compression Strain
Studies, Multiple-step Compression-strain Sonoelastography, Tissue Motion with Speckle
Tracking and sub-pixel registration method etc. From these techniques compression strain
stdies is easiest and simple method for detection of cancer. In previous sub-section we mention
post-compressed signal is compression and shifted version of pre-compressed signal. So there
are two procedures for detection of cancer using compression strain studies. One is observed the
amount of shift and another is observer amount of compression. Amount of shift is observed by
the cross-correlation technique. But in cross-correlation technique don’t get the perfect matching
position and for this reason get the undesired false peak. Another disadvantage of this technique
15 every point of pre-compressed signal is shifted for searching the maximum matching position.

To improve this situation we observe the amount of compression by compression technique. In
this technique two different sets of phantom RF ultrasound data from the same region of interest
(ROI) are collected and stored by the ultra-sound transducer. Phantom means artificially made
the tissue that contains cancer tissue or hard tissue. One data pre-compressed data and another

data is post compressed data.
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Figurel 3: Ultrasound phantom data show in block (pre-compressed and post-compressed).

Divide the pre-compressed and post-compressed data into some block as shown n figurel 3.
\Match the pre-compressed and post-compressed data using two compression techniques. 1°*
compression technique 1s artificially compressed the each block of pre-compressed data and
matching with post-compressed data. 2™ compresston technique 1s artificially compressed the
‘rame of pre-compressed data and matching with compressed data. In both techniques we
artificially compressed the pre-compressed data and matching with the post-compressed data

than find out the best matching position.

1.4.1 Artificially block compression technique

This technique illustrates that, artificially compressed every block of the pre-compressed data
and matched with post-compressed data. At first taking 1% block of pre-compressed data and the
block ts artificially not compressed then matching with the corresponding same size block of

nd’ 3rd

post-compressed data. In this method 1%, 2 times and so on artificially compressed the each

clock of pre-compressed data then matching with the corresponding same size block of the post-
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compressed data. In all cases find the best matching position. When best matching position is
“ad out then block of post-compressed data start from the best matching position. In this way all
siock of every row and every column in pre-compressed data 1s matching with the all same size
slock of every row and every column in post-compressed data. In this way find out the best
matching position. In case abnormal or hard tissue we get the best match position for small
amount of data displacement compare to normal tissue. This best matching position image 1s

2lasticity image.

1.4.2 Artificially frame compression technique

This technique illustrates that, artificially compressed the frame of pre-compressed data and
matching with the post-compressed data. At first not we compressed the frame of pre-
compressed data. Then we artificially compressed frame of pre-compressed data to assure that
every block of pre-compressed data i1s compressed one times. Again artificially compressed
srame of pre-compressed data to assure that every block is compressed two, three, four times and
so on. Then taking uncompressed block from pre-compressed frame and matched with the
corresponding same size block of post-compressed data frame. In this way taking the 17, 2m 37

times compression block of pre-compressed data frame and matched with the corresponding
same size block of the post-compressed data frame. In all cases find the best matching position.
When best matching position i1s find out then block of post-compressed data start from that
position. In this way all block of every row and every column in pre-compressed data is
matching with the all same size block of every row and every column in post-compressed data.
In this way find out the best matching position. In case abnormal or hard tissue we get the best
match position for small amount of data displacement compare to normal tissue. This best

matching position image 1s elasticity image.

1.5 Organization of this thesis

Thus thesis consists of five chapters. Chapter 1 gives the motivation behind this thesis and the
srospect of cancer detection using ultrasound based elasticity imaging techniques with the

crinciple of elasticity imaging. This chapter also discusses about our proposed techniques for

8



emcer detection which are artificially block compression technique and artificially frame

eompression technique.

Chapter 2 is about the literature review of this thesis which consists of the basic principle about
wanous techniques of elasticity imaging, which can be a method for detection of cancer and the

exsting methods for cancer detection.

In Chapter 3 we presents the detailed discussion of ultrasound imaging, which 1s a common
draonostic medical procedure to produce precise images of structures within the body such as the
abdomen, breasts, female pelvis, prostate, scrotum, cardiology, obstetrics, cancer detection,
wivroid and parathyroid glands, and the vascular system. This chapter also discusses about the
basic block diagram of ultrasound imaging as well as the basic functionality of the ultrasound
mmaging. The different imaging modes of ultrasound imaging and the advantages and
disadvantages of ultrasound imaging are also discussed in this chapter.

Chapter 4 is about our proposed technique for cancer detection. In this chapter we give a brief
description about our proposed techniques which are artificially block compression technique
and artificially frame compression technique. We developed the mathematical formulation for

our proposed techniques and their corresponding results are also presented in this chapter.

Chapter 5 concludes the thesis by presenting the overall view of the thesis and pointing out

some scope for future works for improving this thesis.




Chapter 2

Literature Review

2.1 Techniques for elasticity imaging

The concept of ultrasound based elastic imaging as discussed in previous chapter. For the
detection of cancer tissue, various types of ultrasound based elastic imaging techniques have
been developed by the extensive researches on this arena. In this chapter we review the different
nvpes of ultrasound based imaging techniques. These are Vibration Amplitude imaging,
Compression Strain studies, Multiple-step Compression-strain Sonoelasticity, Transient
elastography and tsissue motion with Speckle Tracking. Compression Strain studies contain the
Combined Auto-Correlation (CAM) method, Normalized Cross-Correlation (NCC) method and
Zero-Normalized Cross-Correlation (ZNCC) method. Multiple-step Compression-strain

Sonoelasticity contain the Zero Phases Matching method.
2.2 Vibration Amplitude Imaging

Vibration amplitude sonoelastography detects a hard lesion by looking at the disturbance of the
sibration amplitude pattern. Lemer and Parker first presented preliminary work on vibration
amplitude sonoelastography (“sonoelasticity imaging”) in 1987 [5]. In general, the lowest
frequency modes are preferred because the lowest frequency is the easiest to excite and to
mterpret. In this method, a low frequency vibration (20-1000 Hz) is applied externally, and is
mansmitted in the tissue of interest. A hard inhomogeneity covered by soft tissue induces a
disturbance in the normal vibration eigenmode patterns. Color Doppler imaging is then used to
detect the resulting tissue stiffness. Since the velocity of propagation is a function of the elastic
properties of tissue, measurement of the velocity of a propagating mechanical vibration in tissue
will yield the differences in elasticity. The concept is that stiff tissues will respond differently to

an applied mechanical vibration than normal tissue. Areas, or tissue, of increased stiffness will
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experience less or decreased vibrations which can be seen as a in the Doppler sonoelasticity
mmace. The main advantage of this technique is the ability to view the in-vivo results in real time.
I= 1994, a mathematical model for vibration amplitude sonoelastography was completed [6]. A
“sonoelastic Bom™ approximation was used to solve the wave equations in an inhomogeneous
{but 1sotropic) medium. The total wave field inside the medium can be expressed as:

Duowale Dot Dy oo 2)

Where, @y, 1s the homogeneous field or incident field. On the other hand @, is the field scattered
s the inhomogeneity.

23 Transient elastography

Transient elastography was presented by Sandir etal in 1999 [7]. The method relies on the
abservation on the propagation of a pulsed shear wave, 1.e. a wave where the oscillations occurs
perpendicular to the direction of energy transfer, to determine the elastic properties of tissue, also
known as transient elastography. The shear wave has a very low-frequency (60 Hz), and the local
velocity (typically from 1 to 10m/s). This wave propagating in the tissue and this wave is directly
related to the Young’s modulus, E. The Young’s modulus is also known as the modulus of
elasticity, and can be calculated by dividing the tensile stress by the tensile strain as given by this

equation:

téensile stress F/Ad FLC

E= = S 22

tensile strain L Ly AL

Where E 1s the Young’s modulus (modulus of elasticity), F is the force applied to the object,
A, 1s the original cross-sectional area through which the force is applied, L is the amount by

which the length of the object changes, and L, 1s the original length of the object.
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2.4 Compression Strain Studies

The term "elastography” was developed by Ophir et. al. in 1991 as a quantitative method of imaging the
elasucity of biological tissue by direct imaging of the strain and the Young’s modulus of tissue [8]. This
method 1s based on the static deformation of a linear, isotropic, elastic material. Externally
compressed the tissue under inspection and used cross-correlation analysis on the pre and post-
eompression A-line pair. From these data, calculate the strain profile inside the tissue along the
mnsducer axis. Also measured the stress field close to the transducer surface, and added
eorrections for the non-uniform stress field inside the tissue. Having both strain and stress fields,
aalculated the elastic modulus profile of the tissue, and displayed the information as an

“elastogram.” This elastogram also called elasticity image.

The first RF A-line i1s obtained with the transducer slightly pre-compressing the region of
mmerest (ROI). The second RF A-line is obtained after axially compressing the region of interest
(ROI) by dz (usually, dz is about 1% of the target length). The post-compression A-line is 2dz/c
shorter than the pre-compression A-line, where ¢ 1s the speed of the ultrasound in the region of
mizerest (ROI). So the post-compression A-line is zero added to have the same length as the pre-

ecompresston data. Cross-correlation is applied between segments in an A-line pair.

The temporal location of the maximum peak of the cross-correlation function 1s the estimate
of the time shift between the two segments. The time scale is relative to the face of the
mansducer, so the shift of the signal starts as zero at the beginning of A-line, and increases to
2dz'c at the end. If the elastic modulus differs somewhere along the line, little or no increase will
show 1n the time shift of certain segments. After one A-line pair is processed, the corresponding
strain profile was defined as a one-dimensional (I-D) graph showing the strain as a function of
depth in the target. The quantity shown in the below Equation is a particular local estimate of the

smain in the i-th depth increment:

A IR - )
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amere t; 1s the time shift for segment 1. After repeating the process for an array of all lines,
w~ained a strain 1mage of the compressed target

25 the range of strain measurement starts from zero and increases, they choose to display the
~erse of elastic modulus in the “elastogram” (stiffness), so that the display has a finite range.
T3 technique may be used to detect tumors with increased stiffness inside compressible soft
=:sue. Compression strain studies not only used cross-correlation method 1t 1s also used

:mbined auto-correlation method, normalized cross-correlation method, zero-normaiized cross-

zomelation method for detection of cancer.

2.4.1 Combined Auto-Correlation method

e
<

combined autocorrelation method, which produces an elasticity image with high-speed
s==<essing and accuracy, and achieves a wide dynamic range for strain estimation by combining
==:-step processing. In this technique, tissue compression as well as RF signal is used.
Therefore, the RF signals before and after compression can be modeled as:

1 (t,d)= A(t,d) =~ = L) : e (224)

i> (t,d)= A (t-T, d-pq) e 25)

a=ere 1) (t,d) and 1,(t,d) are the complex RF signals measured before and after deformation
s=cectuvely, A(t,d) 1s the envelop, @, 1s the transducer’s center angular frequency, T is the time
= = and yq1s the lateral displacement. In this complex cross-correlation function is used.

+=C the cross-correlation method first step 1s coarse estimation by searching maximum envelop

se—2lation and the second step is a fine estimation by using the unwrapped phase which 1s

:=zined by first step.

2.4.2 Normalized Cross-Correlation method

o

=15 technique, the echo signals before and after compressions are treated as complex signals

<==d in time. If the echo signals before and after compression are x (n) and y (n) respectively

Ze= Normalized cross-correlation between them can be represented as follows:

13



M N e, n{1.3)» 4
Cnocli, j)=2i= -u E .

it re—n [ AL iici o soniiinimemnnmsrnsrnsssannane

where, Xpq(1,)= x(m+i,n+j)
Yma(1))= y(m+i,ntj)
[ Xen o= E':!:
N
[Ymal= | ZMe s Iy [ ymn(ii)2

e (26)

e 2T

e (28)

um phase angle is determined from the maximum value of Cncc. Then time shift and
cement is determined from the maximum phase angle. Finally Differential strain is

med.

p..-l..} Zero-Normalized Cross-Correlation method

normalized cross-correlation method implements the 2D based strain image. In Zero

sormalized cross-correlation method matching of the same points between the two images

mecorded before and after compression. If the windowed pre-compression signal is x (n) and the

‘wendowed post-compression signal is y (n), then ZNCC between them x (n) and y (n) is defined

s ollows:-

Where,

sm. n=x (m+i,ntj)

vm n=y (m+i,0tj)

[ xmn]=—

[ ym.n]=—

) Koo ) s [ xm, n(i,j)]2
\ ;

v 5 S Uy [ v m.n(i.§))2
Y ' :
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Ax = S:_"' ¥ v [ smon(ij) —xm,n]2

Avw = SN v e sl i) e Nwe 913
Ay iy Doy | voun(i i} = vim.n)2

algorithm to construct the strain image 1is similar to the previous described with the normal
correlation is replaced by zero-normalized cross correlation. Maximum phase angle is
ined from the maximum value of Czncc. Then time shift and displacement is determined

» the maximum phase angle. Finally Differential strain is determined.

Multiple-step Compression-strain Sonoelastography

ession strain sonoelastography was developed by a group at the University of Michigan,
Arbor, headed by O’Donnell [9, 10]. This method i1s given stiffness as a function of
wmon, to predict the strain inside tissue given specific forces and boundary conditions. The
gomque, used to detect the strain inside the medium after deformation, 1s based on cross-
elation of ultrasound A-lines. The group suggested using large deformation to maximize the
-to noise ratio (SNR) of the displacement and strain estimations. However, large
pacement results in significant internal strain, which changes the spatial distribution of the
ers within an area of the image, thus de-correlating the speckle patterns used for cross-
warrelanion. Instead of this technique they used multiple small step deformations to produce a
total deformation. The total displacement was then calculated by accumulating the
spiacement between each small deformation. To determine the displacement inside the tissue
er each small deformation they used baseband correlation. The time shift between the pre- and

s deformation signals were estimated from the phase of their zero-lag correlation functions:

ran 2 fm(C'(0 Re(C (D))
ton - U b KL OO .5

A

e. C is the baseband correlation function. Multiple-step compression sonoelasticity also

the zero phases matching method to determine the displacement. In this method, basic
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wmcept is to calculate the local scaling factors and uses them adaptively to make the phase of the

smeomum of the correlation function zero or within some tolerance phase level.

e received echo signal can be modeled as:

x(tFEx(@t) ... (2.11)
y (1)= x (t+at-t)=x (t+t(a-1))
or, y ()= x (t+t (1)

8o the scaling factor can be interpreted as a variable delay which depends on the position of
smerest (ROI).

New. ¢ (o) can be defined as the phase of the maximum of correlation between the pre-
sompression signal x (n) and post-compression signal y (n).

% can be noted that,

L 2se 01: When ¢ (o) =positive then y (n) is a stretched version of x (n)

L ase 02: When ¢ (') =negative then y (n) is a compressed version of x (n)

" Lase 03: When ¢ (a') =zero then y (n) is identical to x (n)

Thus iteratively a' 1s estimated and y (n) is scaled with this factor and ¢ (') is calculated.

2.6 Tissue Motion with Speckle Tracking

2-D speckle tracking technique was developed by Trahey and his colleagues [11] to measure
moton in soft tissue. The speckle tracking system employed a sum of absolute difference (SAD)
method to estimate tissue motion in two dimensions. The echo data was first obtained for a 2-D
“kemel” region of size k (1 j). At a later time, the data for a “search” region including and
swrounding the kemel region was acquired: s (i,,]). The following equation was evaluated for

#ach a and b until a minimum of E (a,b) occurred:



(a,b) was the movement of the “kemel” region between the time of the first and the second
acquisitions. Their system utilized three major components: an electromechanical vibrator to
tissue motion, an ultrasound scanner that can output either RF or detected echo data, and a
tracking system for motion estimation. Synchronization was made between the three

ents so that phase information was preserved. The 2-D displacement information was
ved in real-time as 2-D map of colors.
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Imtroduction

szsound is one of the most widely used techniques in medical imaging. Ultrasound imaging 1s
semmon diagnostic medical procedure that uses high-frequency sound waves to produce
images of structures within the body. Although this limit of frequencies varies from
to person, it is approximately 20 kilohertz (20,000 hertz) for healthy, young adults. As
nd images are captured in real-time, they can show the structure and movement of the
s internal organs, as well as blood flowing through blood vessels. Imaging by ultrasound
s dramatically changed the investigation as well as management of many clinical problems of
ent parts in the body. Ultrasound (or sonogram) technology allows doctors to see inside a
ment without resorting to surgery. Ultrasound imaging is often used to examine many parts of
body such as the abdomen, breasts, female pelvis, prostate, scrotum, cardiology, obstetrics,
detection, thyroid and parathyroid glands, and the vascular system. During pregnancy,
msounds are performed to evaluate the development of the fetus. The images produced during
w» mltrasound examination often provide valuable information in the field of diagnosing and
ng a variety of diseases and conditions of the body. The popularity of ultrasound imaging
because it provides high-resolution images and does not damage tissues with ionizing
on. It is also mostly non-invasive, although an invasive technique like intra-vascular
weing 15 also possible. There are also novel non-imaging uses of ultrasound like bone
mitometer where the ultrasound speed difference is used to measure the depth or width of
Seemes non-invasively. Ultrasonic sound waves use in ultrasound imaging sends from a transducer
2 frequency too high to be heard. The ultrasonic sound waves move through the skin and other
ety tissues to the organs and structures within the body at the time when the transducer is

pusced at certain locations and angles. The sound waves bounce off the organs like an echo and

memurn to the transducer. The transducer picks up the reflected waves, which are then converted
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» 2 computer into an electronic picture of the organs or tissues under study. The speed at which
w4 waves travel 1s affected by different types of body tissues. Sound travels quickly through
tissue, and moves most slowly through air. The speed at which the sound waves are
omed to the transducer, as well as how much of the sound wave retums, is translated by the
sducer as different types of tissue. A clear conducting gel is placed between the transducer to
nate air between the skin and the transducer for the best sound conduction and to allow the
w for smooth movement of the transducer over the skin. Normally ultrasound displays the
zes 1n thin, flat sections of the body. Current research in advancements in ultrasound

logy includes three-dimensional (3-D) ultrasound that formats the sound wave data into 3-

rages. Four-dimensional (4-D) ultrasound 1s 3-D ultrasound in motion

2 Working principle of Ultrasound Imaging

Transmit 4

beamformation
\\
Transducer sHe
, Acoustc Wave Scatiering
Array N Propagation
=aze Recerve
Fammation Beamformation

3.1: Overall Block Diagram of an Ultrasound Scanner.

sonic imaging involves generation of acoustic wavelets, control of the timing and amplitude
#ese wavelets means to form beams and reception and processing of the echoes to form the
Beam forming 1s a common signal processing technique used to create directional or
. selectivity of signals sent to or received from an array of sensors or antennae. Generation
soordinated timing signals for transmit and delays for receive processes probably the most

<ive building block is called beam formation. Transducers are usually multi-element arrays
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sezoceramic elements. Image formation is conversion to video raster, image processing. The
sence of scanning starts with initiation of a scan by system processors. Beam former set to
priate scan angle and transmit focal location. At the time of pulsing voltage applied to array
sments followed by timed sequence sound emitted from elements and pre-amplifiers initiate
ouon of echoes. Receive beam former applies needed delays to optimize energy from desired
~.: and look angle and data stored and scan conversion to video raster begins and imaged

==ed This process repeats itself

Basic Functionality of ultrasound imaging

- ultrasound concepts that demonstrate how ultrasound systems works and how transducers
=« sound waves along scan lines in the region of interest (ROI) discussed in this section. The

sencies that are referred for ultrasound system are greater than 20 kHz, which is commonly
t2d to be the upper frequency limit the human ear can hear. Typically, ultrasound systems
e in the 2 MHz to 20 MHz frequency range, although some systems are approaching 40
for harmonic imaging [12]. Basically the ultrasound system focuses sound waves along a
1 scan line so that the waves constructively add together at the desired focal point. The
zation of the sound wave towards the focal point is reflected from any object they
sounter along their propagation path. Once all of the reflected waves have been measured with
wransducers, the ultrasound system transmitted new sound waves towards a new focal point
the given scan line. Once all of the sound waves along the given scan line have been
red, a new scan line is focused from the ultra sound system until all of the scan lines in the

region of interest have been measured.
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3.3: Transmit Signal steering and focusing in the region of interest.
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I case of transmit focusing shown in figurel, the electrical signal coming from the pulse
generator are delayed symmetrically using a delay line. The transducer which 1s near the focal
pomt gets larger delay whereas the transducer which is far away from focal point gets smaller
delay using the delay line. The delayed electrical pulses vibrates the transducer array producing
sound waves that propagate through the region of interest (ROI) which is typically the desired
argan and the surrounding tissue. As the transmit pulses are symmetncally delayed, they
siumately focus towards a particular focal point. The process of steering and focusing the sound
beam in an ultrasound system is commonly referred to as phased array beamforming [13].
Transducers become sensors once transducers have generated their respective sound waves and

an detect any reflected sound waves.
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Figure3.4: Receive beamforming during signal acquisition from the region of interest.

When the transmitted sound waves encounter a change in tissue reflectivity within the region of
mterest, reflection occurs. The reflected sound waves are captured by each active transducer. The
sound waves in each active transducer are asymmetrical delayed depending on the distance of

desired focal point. The delay is asymmetrical because sound waves can reflect from any part of
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region of interest if they encounter a change in tissue reflectivity. In ultrasound imaging, receive
beamformer can be used to steer the beam by controlling the delay of each element. By
controlling delay differences, dynamic focusing can be implemented on the receive beamformer
side. These delay differences compensate for propagation delay differences between the focal
point and the various elements of the array based on the array geometry. Assuming spherical
reflected waves, these delay differences are bigger from targets in the near field where the wave
front arrving at the array 1s more curved, and smaller from those in the far field where the
arriving wave front 1s more flat. With dynamic focusing, these focusing delays (added to the
steering delays) are not fixed, but rather are a function of time corresponding to the depth or
range from which the echoes are being received during the scan-line The reflected sound waves
from a longer distances compare to closer distances may be weaker or may be less reflectivity so,
log compression technique 1s done to get the actual information. After passing through the delay
line the sound waves are in parallel line and the peak of the received wave is detect by using
envelope detection techniques and these parallel line sound waves are summed together. Once all
of the amplitudes for all of the focal points have been detected, they can be displayed for analysis
by the doctor or technician. Finally, for display on the CRT monitor a coordinate transformation
called scan conversion need to be performed because ultrasound system usually operates, does

not match the display coordinate system.

3.4 Imaging Modes

There are different types of imaging modes. Some are described below:

Amplitude mode: Amplitude mode or A-mode imaging as a function of time displays the
amplitude of a sampled voltage signal for a single sound wave which 1s considered for 1-D. It is
used to measure the distance between two objects by dividing the speed of sound by half of the
measured time between the peaks in the A-mode plot, which represents the two objects in

question. This mode 1s no longer used in ultrasound systems.

Brightness mode: Brightness mode or B-mode imaging is the same as A-mode, except that
brightness 1s used to represent the amplitude of the sampled signal. It is used for producing a 2-D

image.
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+sntinuous Wave Doppler: Using Continuous Wave Doppler or CW Doppler, image can
make Procedure 1s a sound wave at a single frequency is continuously transmitted from one
pezo-electric element and a second piezo-electric element 1s used to continuously record the
weected sound wave. By continuously recording the received signal, there 1s no aliasing in the
mceived signal. Using this signal, the blood flow in veins can be estimated using the Doppler
fequency. However, since the sensor is continuously receiving data from various depths, the

welocity location cannot be determined.

Pukse Wave Doppler: In Pulse Wave Doppler or PW Doppler, along each scan line several
pulses are transmitted. From the relative time between the received signals, the Doppler
frequency 1s estimated as well as the velocity location can also be determined. A darker color

wsually denotes a larger magnitude while a lighter color denotes a smaller magnitude.

Color Doppler: In Color Doppler, the PW Doppler is used to create a color image that is super-
mnposed on top of B-mode image. A color code 1s used to denote the direction and magnitude of

the flow. Red typically denoted flow towards the transducer and blue denotes flow away from it.

Power Doppler: In Power Doppler, instead of estimating the actual velocity of the motion, the

strength or the power of the motion 1s estimated and displayed.

Harmonic Imaging: Harmonic Imaging is a new modality where due to the usual high
frequency of the harmonic, these images have higher resolution than conventional imaging but
due to higher loss, the depth of imaging i1s limited. This system imposes stringent linearity

requirements on the signal chain components.

Elasticity Imaging: Elasticity or Strain Imaging is a new modality where some measures of
elasticity of the tissue (usually under compression) is estimated and displayed as an image. This
mmage 1S capable to distinguish between normal and malignant tissues. Both on clinical
applications and in real-time system implementation Elasticity image is currently a very active

area of research.
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‘3.5 Advantages and Disadvantages of Ultrasound Imaging

The advantages of ultrasound imaging include bedside availability and the relative ease of

performing repeated examinations. Imaging is real-time and free of harmful radiation. There are

mo documented side effects and discomfort 1s minimal. Despite the absence of randomized,
eontrolled trials, ultrasound imaging guidance for interventional procedures in the thorax is
Bkely to improve diagnostic yield and reduce complications by providing visual guidance [14]. It

Belps the physicians to decide whether is anything wrong within the body

The disadvantages of ultrasound imaging are prnimarily related to the fact that it is heavily
eperator-dependent. Retrospective review of images provides only limited quality control. In the
obese patient ultrasound penetration may be limited so that deep structures may not be well seen.
There is a trade-off in ultrasound between using the highest frequency probe possible to achieve
hagh resolution and a lower frequency to achieve beam penetration. The ultrasound beam is also

arrested by gas in the abdomen and is unable to penetrate bone

3.6 Conclusion

Modem ultrasound systems related to signal processing intensive. Better image quality and
higher diagnostic value can be achieved by advanced techniques of signal processing. New
advancements like 3D/4D imaging only increase the processing requirements of such systems.
To add new functionalities into the systems are the challenges for the equipment manufacturers

company.
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Chapter 04

Elasticity imaging for cancer detection

4.1 Introduction

In this thesis, the objective is to detect cancerous tissue using ultrasound based imaging
technique. Normal B-mode ultrasound image cannot differentiate between cancerous and non-
cancerous tissue. Therefore we construct an elasticity image from the radio frequency ultrasound
signals acquired before and after applying a physical pressure in the region of interest. In other
words, elasticity tmaging method 1s based on external tissue compression, with subsequent
computation of the strain profile along the transducer axis. In this work, we used two different
sets of real RF ultrasound data collected from the phantom subject. Phantom 1s an artificial tissue
that contains hard object surrounded by soft gel-like material. We also acquired synthetic
ultrasound data by running a MATLAB program for simulating ultrasound system. One set
represents pre-compressed data and another set represents post compressed data. Collected data
are displayed in B-mode image in figureOl and figure02. The first signal processing task for
generating a strain image 1s estimation of local compression throughout the scan region. The

inputs are pre-compressed and post-compressed signals of RF ultrasound data.

e e

R e
2 40 B0 8d 100 120 140 160 180 a0 100 120 140 160 180

Fre-compressed real ulirasonund RF data fromn

. Pogt-compressed real vilrasomnd RF data fi o
plhantomn subject

plianfomn subjecr

Figured.1: B-mode imaging real ultrasound RF data from phantom subject.
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Figured.2: B-mode imaging synthetic data by using MAT-LAB.

Normal B-mode imaging real ultrasound RF data and synthetic ultrasound data cannot detect the
cancer or hard tissue surrounding by normal tissue. These types of imaging cannot differentiate
between the normal tissue and cancer tissue. In figure4.1 and figure4.2 normal tissue and cancer

tissue are look like same.

4.2 Mathematical Formulation

Two related scan-lines are collected from the ultrasound RF data. One scan-line is the pre-
compressed signal which is collected from pre-compressed ultrasound RF data. Another scan-
line 1s post compressed signal which is collected from post-compressed ultrasound RF data. The

two scan-lines are shown in figure4.3 and figure4 4, respectively.

Let us consider,

Pre-compressed signal, x;= s (t) (Shown in figure 4.3)

Post-compressed signal, x,= s (at) (Shown in figure 4.4), compressed version of pre-compressed
signal.

Where, a = amount of compression (‘a’ can be any value greater than one).

A block of data centered on the point of interest in the pre-compressed signal 1s compared with

the post-compressed signal of equal size. A match is identified by calculating the similarity

27



between these two blocks, noting the post-compression block that registers the highest similarity.
Finally, the displacement estimation 1s equal to the difference between the positions of the pre-
compression and post-compression blocks. We used two methods for searching the best
matching position or correct compression factor. One 1s block wise compression technique and
another is frame wise compression technique. In these two techniques, we divide the pre-
compressed and post-compressed data into a number of equal size blocks. In the first technique,
we compress each block of pre-compressed signal using signal processing technique and then
estimate the matching index with a block of post-compressed signal located in the related
position. In the second technique, we compress the entire scan-line of the pre-compressed signal
considering some pre-determined compression factors. Then we take every block of pre-
compressed signal and match with the corresponding same size block of post-compressed signal.
In both the techniques we observe the best matching position or correct compression factor from
the maximum matching index for every block or window. Figure 4.5 show a typical matching
index profile for a block or window where window size i1s 150 (shown in figure4.3 and

figure4 4).

Fre-compressed signal window
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Figured.3: Pre-compressed signal.
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!.1 Block wise compression technique

this technique every scan-line of pre-compressed data and post-compressed data are divided
o n blocks. We assume that each block or window of pre-compressed data and post-
npressed data are equal size or length. Pre-compressed signal and post-compressed signal are
yressed as xji(t).

1ere, 1= 1 means pre-compressed signal and 1= 2 means post-compressed signal

1234, . ... ..n-lonmeans 1 2™3"a"™ .. n1"n" block
pectively.
block
0l
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zured.6: Pre-compressed signal (x;(1)).
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Figured.7: Pre-compressed signal (x;(1)).

First block of pre-compressed signal is expressed as x'; (t) in the range 0<t<t,. First block of
post-compressed signal is expressed as x'; (t) in the range 0<t<t;. We compute the matching

value between x'| (t) and x'>(t) using the index

Matching index, Pj= ——= i e 4

Where, Py represents the normalized cross-correlation at zero lag between x'1 (t) and x'2 ().

Now, we compress the First block of pre-compressed signal, x'; (t), by a compression factor of
‘a;’ using signal processing technique. In this work, we used ‘resample’ function of MATLAB
that interpolates the compressed values by fitting with a tenth order polynomial function. The
compressed signal can be expressed as x'; (ait) within the range 0<t< tya;. Then we extract the
corresponding same length block signal from the post-compressed signal which 1s expressed as
x'2 (t) within the range 0<t<t/a,.

We compute the matching value between x' (at) and x's (t) using the same index

Matching index, Py= ——— @4

Where, P, represents the normalized cross-correlation at zero lag between x'; (a;t) and x'5 (1).
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"hen, we compress the 1™ block of pre-compressed signal (x'; (t)) by a compression factor of “a;’
vhich is expressed as x', (at) within the range 0<t< t,a, [Note that a;> a;]

[hen we extract the corresponding same length block signal from the post-compressed signal
vhich is expressed as x'; (t) within the range 0<t<t,/a,.

Ve compute the matching value between x'; (ast) and x'; (t) using the index

Matching index, Ps = e i (43)
he process continues for a compression factor of “as’, ‘a4, ‘as’, ‘ae’,.. ..., ‘ai.

Now we find the best matching position observing the matching index profile. The maximum

natching position, aya.., can be obtained by evaluating the following expression

a_... =argmaxpb

m
A,

i (a9

When the best matching position is obtained, the second block of post-compressed signal will
tart from that position. Second block of post-compressed signal i1s expressed as x*; (t) within
ange t;-a;< t< (t;-a;+ t1), where t,= t;-a;+ t;. Second block of pre-compressed signal is expressed
s X7 (1), within range t,<t< (t;+ ;=2 t,), where t;= t;+ ;=2 t,

We compute the matching value between x*; (t) and x% (t) using the index

Matching index, Pj= ——==t— — il (4.5)

Where, P, represents the normalized cross-correlation at zero lag between x| (t) and X% (t).
Now, we compress the First block of pre-compressed signal, x| (t), by a compression factor of
a;’ using signal processing technique. In this work, we used ‘resample’ function of MATILAB
hat interpolates the compressed values by fitting with a tenth order polynomial function. The
compressed signal can be expressed as le(alt) within the range 0<t< ta;. Then we extract the
corresponding same length block signal from the post-compressed signal which is expressed as
¢*, (t) within the range 0<t<t,/a,.

I'he process continues for a compression factor of ‘a;’, ‘az’, ‘ay’, ‘as’,........, ‘a; for pre-

compressed signal.
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Then we find the best matching position observing the matching index profile. The maximum
matching position, ama.y, can be obtained by evaluating the following expression

a_.. =argmaxp

m
a

’ sesmaszmeii. ... ... (4.6)
When best matching position is obtain then third block of post-compressed signal will start from
that position. Third block of post-compressed signal 1s expressed as x5 (t) within range t;-a;< t<
(t2-ai+ t2), where t;= t-a;+ t; Then we extract the third block signal from the pre-compressed
signal which is expressed as x| (t) within range t,<t<(t;+ t,+ ;=3 t;), where, t:= t;+ t;+ t,=31;
[n this way, we taken all blocks of all scan-line sequentially (fourth, fifth, .. .. . n"™)and done

same job.

4.2.2 Result of block wise compression technique

We obtain the amount of compresston (a;) from the maximum matching index for all blocks of
all scan-lines. The amount of compression for all blocks of one scan-line 1s shown in figure4.8
and figure4 .10 for real ultrasound data and synthetic data respectively. If hard tissue or cancer
tissue 1s present then amount of compression factor 1s smaller compare to normal or soft tissue’s
compression factor. Because, for hard tissue maximum matching index 1s obtamn by small
amount of compression factor. But for normal or soft tissue amount of compression is larger
compare to hard tissue also shown in figure4 8 Finally display the B-mode elasticity tmage
(shown 1n figure4 9 and figure4 11). B-mode elasticity image contain the amount of compression

for all blocks of all scan-lines.
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Figure4.9: B-mode elasticity image for real ultrasound data using block compression technique.
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mode elasticity image 1s an amount of compression for all blocks of all scan-line. B-mode
sticity image detect the hard tissue or cancer tissue surrounding the normal tissue. In other
rd B-mode elasticity image differentiate between normal tissue and hard tissue. The cancer
sue 1s indicated by red color circle in B-mode elasticity image as shown in figure4.9 and
ure4.11 for real ultrasound data and synthetic data respectively. But in these B-mode images
seral noise are occurs 1n cancer tissue and surrounding normal tissue. And these images are
king like so clumsy. There are unwanted peak is occurs in amount of compression image of
e scan-line (shown in figure4.8 and figure4.10). To overcome this situation we introduce

veral approaches later.

2.3 Frame compression technique

ock wise compression technique takes more time. So we mtroduce another technique. In this
hnique every scan-line of pre-compressed data and post-compressed data are divided into n
ck. We assume that each block of pre-compressed signal are equal size or lengths of the
eks are same as shown in figure4.12. Also assume that, block size of post-compressed signal
> not equal as shown in figure4.12. This technique illustrates that, compressed the entire scan-
e of the pre-compressed signal considering some pre-determined compression factors and
itching with the post-compressed signal. At first we uncompressed the entire scan-line of pre-
mpressed signal and matching with the corresponding same size block of post-compressed
nal as shown in figure4 12, Then we compressed the entire scan-line of pre-compressed signal

compression factors ‘a;’ and matching with the corresponding same size block of post-
mpressed signal as shown in figure4.13. In this way we compressed the entire scan-line of pre-
mpressed signal by compression factor ‘a;” and matching with the corresponding same size
ek of post-compressed signal as shown in figure4.14. Note that, ‘a,” is greater then ‘a,”. The

ocess continues for a compression factor of “as’, as’, *as’, ‘a¢’ ,........

36



1 1
1
A |
t2
i -
t'3
1 D B3
ts
ts e
, to
@ *
5 é
k] r
a 5
6 -
s |
;]
& ]
L
L
t'n-2 ¢
tn-1 .
f'n -
0
5

Post-compiessed signal sean hne

— -2

—‘ tn-1

i
| tn
Pre-compmeszed siemal scon-hne

zure4.12: One scan-line of pre-compressed signal and post-compressed signal.

37



1 o 1
t'1
fl al
2
| F2:al
t'3
t | 37aL
ts AN
t'G t4:al
& ‘ t5:al
@ ¥
o 4
1 7
s X
4 L)
= £
. ™
L 3
™
LS ¢ |
T o
tn-2 @
® |
-1 : '
i m-2al

{

Fost-onynessed siemal ~cm-lne

— tn-3:al
— tal
Pre-compressed sigmal 2¢n-lne
Figured4.13: Entire scan-line of pre-compressed signal is compressed by compression factor ‘a,’

ind post-compressed signal is artificially uncompressed.

38




1 1
trl I 1 t-l 11_' ‘f":r:
_ —f2al
2
_4!'.1 ""_‘
r3
— a2
4
— t5:a2
= |
o % |
-
o
¥
¢
¢
¢
3 r
» L
-
Q
g £
&
-
&
L1 &
& #
t'n-2 m-2:az2
fo-1 —tn-1a?
fn .
— a2

Post-Compressed sumal sca-line

Fre-compuessed sienal <n-lue
| .

oured.14: Entire scan-line of pre-compressed signal is compressed by compression factor ‘ay’

d post-compressed signal s artificially uncompressed.

39




Ve extract the first block of pre-compressed signal from uncompressed scan-line and matching
vith the corresponding same size block of post-compressed signal using equation4.1 and find the
natching index. Then we extract the first block of pre-compressed signal from ‘a;” compression
can-line and matching with the corresponding same size block of post-compressed signal using
quation4.2 also find the matching index. In this way we extract the first block of pre-
ompressed signal from ‘a,’, ‘as’, ‘as’, ..............., ‘a; sequentially. In all cases we observed
he best matching position from maximum matching index using equation4.4. When best
natching position is obtain then second block of post-compressed signal is start from that
osition and matching with the corresponding same size block of pre-compressed signal using
quation4.5. This process 1s continuous for compression factor ‘a;’, ‘as’, ‘as’, ................, ‘&
equentially. In all cases we obtain the best matching position from maximum matching index. In
his way we extract third, fourth, fifth, ....... ........ . nth block of all scan-line sequentially

nd done same job.

l.2.4 Result of frame compression technique

Ve obtain the amount of compression (a;) from the maximum matching index for all blocks of
Il scan-lines. The amount of compression for all blocks of one scan-line is as shown in
1gure4. 15 and figure4.17 for real ultrasound data and synthetic data respectively. If hard tissue
r cancer tissue 1S present then amount of compression factor 1s smaller compare to normal or
oft tissues compression factor. Because, for hard tissue maximum matching index is obtain by
mall amount of compression factor. But for normal or soft tissue amount of compression is
arger compare to hard tissue also shown in figure4.15. Finally display the B-mode elasticity
mage as shown in figure4.16 and figure4.18 for real ultrasound data and synthetic data
espectively. B-mode elasticity image contain the amount of compression for all blocks of all

scan-lines.
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3-mode elasticity image is an amount of compression for all blocks of all scan-line. B-mode
lasticity image detect the hard tissue or cancer tissue surrounding the normal tissue. In other
vord B-mode elasticity image differentiate between normal tissue and hard tissue. The cancer
issue is indicated by red color circle in B-mode elasticity image (shown in figure4.16 and
igure4.18). But in these B-mode images several noise are occurs in cancer tissue and
urrounding normal tissue. And these images are looking like so clumsy (shown in figure4.16
nd figure4.18). There are unwanted peak 1s occurs in amount of compression image of one
can-line (shown in figure4.15 and figure4.17). Reason 1s that taking matching position at
iscrete points. To overcome this situation we introduce several approaches. At first, we choose

Linear Interpolation’ technique.

l.3 Linear interpolation
.near interpolation 1s a method of curve fitting using linear polynomials. In this approach
natching position can be found discrete position as well as continuous position. Linear

nterpolation technique 1s described bellow: -

Ve are applying ‘Linear Interpolation’ technique for improving the quality of image. For
ompression a block or entire scan line we use four compression factors. They are zero, a), a» a;,
4 respectively. If compression factor 1s zero or a, then linear interpolation is not required. Linear
nterpolation actually fit a curve taking three points. When curve fitting 1s complete, we get the
ictual peak. Actual peak may occur in the continuous point as well as discrete point. For the

ollowing figure, the position can be calculated using a formula that is
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‘igure4.19: Calculation of peak (Pixel) taking three points using ‘Linear Interpolation’

echnique.
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Hlowing figures are shown that where peak may found when ‘Linear Interpolation’ technique

applied
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gure4.20: (a) Peak occurs at mid position.

(b)Peak(point-x) occurs in between point-2 and point-3

(c)Peak(point-x) occurs in between point-1 and point-2
above figure4.20(a) shown that when matching value at point-1 and point-3 are same and
int-2 in between them then peak or maximum matching value occurs at point-2 position. This
sitin 1s best matching position. If matching value at point-1 and point-3 are not same then
aximum matching does not occurs in the point-2. Maximum matching value 15 occurs in
tween point-2 and point-3 if matching value at point-3 1s greater then matching value at point-
Then maximum matching position or best matching position observed by equation4.7 plus
sition at point-1 as shown in figure4.20(b). And maximum matching value i1s occurs In
tween point-1 and point-2 if matching value at point-1 1s greater then matching value at point-
Then maximum matching position or best matching position observed by equation4.7 plus

sition at point-1 as shown in figure4.20(c). Finally we display the maximum matching value
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all scan line. This is B-mode elasticity image as shown in figure4.22 and figure4.24. After
en linear interpolation best matching position found at continuous position as well as discrete
1on as shown in figure4.21 and figure4 23. The quality of the B-mode elasticity image 1s

ier the previous B-mode image for both real ulrasound data and synthetic data.

.1 Result after using linear interpolation
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ured.21: Amount of compression for all blocks of one scan-line for real ultrasound data after

ng the linear interpolation
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sured.22: B-mode elasticity image for real ultrasound data after using linear interpolation.
45



Amomnt of compression
tactor e =maller

Amount of conpression Amouut of compression
factor is larger factor is larger
4 % 7 -
35 \\ i |
I & / \
i o/ ) .
25 | ] [ i
2k
15
| /
1h /' |
pa .
06} |
|
a . ! ] i i i
0 10 20 30 40 5 &0 70

Figure4.23: Amount of compression for all blocks of one scan-line for synthetic data after using
linear interpolation.
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Figure4.24: B-mode elasticity image for ultrasound data after using linear interpolation.
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fter observing above figures, we can say that B-mode image quality is improved much from
revious and matching positions are found at continuous points. After taking the linear
iterpolation discrete mode 1s also present inside and outside the hard tissue as shown B-mode
lasticity image for real ultrasound data and synthetic data. To overcome this problem, we

nally use ‘Median Filter’.

.4 Median filter

he purpose of using median filter is outside region of hard tissue, there 1s a mixture of pixels of
hite and black colors. But the numbers of pixels of white color 1s very more than the pixels of
lack colors. Again within hard tissue region, number of pixels of black colors 1s more than
ixels of white colors. Generally soft tissue is seen by us as white color and hard tissue as black
olor as shown 1n figure4 22 and 4.24. Use of median filter is another approach for getting better
uality of B-mode elasticity image. Median filter takes the all values from the m*n then it sorting
1e values in ascending order. Finally extract the middle value from these values and paste into
rst row and first column in m*n matrix. For median [2, 2] filter 1t takes all values from 2*2
1atrix within mxn matrix. Then sorting these values in ascending order. Next obtain the average
alue of two middle values and paste the value into the first row and first column in m*n matrix.
he working principle of median |2, 2] filter 1s given bellow.

0.5341
A= 07271

0.3095

e P = -~
\

O 0

) 6
A= 04692 0.4
t,

¥

0.1546  0.185%. i

n this way same job is occurring within an m»n matrix.
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4.4.1 Result after using median filter

Amount of compression tactor

Ly sialler
Aumount of congresson Amount of compession
factor 13 larges factor g Ll zer
R .
5 /.,\‘
(_
45} \’l.'.
4l |
35F
I
25k l -
|
2+
15k -
! |
|
05p .
0 A L i i i L J.
0 20 40 60 60 100 120 140

Figure4.25: Amount of compression for all blocks of one scan-line for real ultrasound data after

using linear interpolation and median filter.
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Figure4.26: B-mode elasticity image for real ultrasound data after using linear interpolation and

median filter.
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Figured4.27: Amount of compression for all blocks of one scan-line for synthetic data after using
linear interpolation and median filter.
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Figure4.28: B-mode elasticity image for synthetic data after using linear interpolation and

median filter.
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The amount of compression factor for all of one scan line is better than the previous amount of
compression factor. Because using linear interpolation and median filter we get continuous and
discrete values for amount of compression data. From figure4.25 and figure4.27 shown that
amount of compression curve is smooth and unwanted peak is reduced. In B-mode elasticity
image, 1t 1s clear to seen differentiate between hard tissue or cancer tissue surrounded by soft
tissue. And B-mode elasticity image is so smooth and discrete point is removed. From figure4.26
and figure4.28 shown that hard tissue or cancer tissue is represent as dark and soft tissue is
represent as bright. Inside of red circle indicate the cancer tissue or hard tissue and outside of red

circle indicate the normal tissue.

4.5 comparisons

In real ultrasound data for compression factor 3 and window size or block size 128 we observed
the best quality B-mode elasticity image. And in synthetic data for compression factor 3 window
size 256 we observed the best quality B-mode elasticity image.

We fixed the compression factor and vary the window length for real ultrasound data and

synthetic data:
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Figured4.29: In real ultrasound data B-mode elasticity image for compression factor 3 and

variable window size.
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Figure4.30: In synthetic data B-mode elasticity image for compression factor 3 and vanable
window size.

In real ultrasound data for window size 128 we get the best B-mode elasticity image as shown n
figure4.29. And in synthetic data for window size 256 we get the best b-mode elasticity image as
shown in figure4 30.

Then we fixed the window size and vary the compression factor for real ultrasound data and

synthetic data:
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Figured431: In real ultrasound data B-mode elasticity image for window size 128 and variable

compression factor.
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Chapter 5

Conclusion

5.1 Summary

Ultrasound imaging is a real-time and relatively inexpensive imaging technique that is used mn
the purpose of clinical practice such as for non-invasive imaging and diagnosis of various tissue
abnormalities. Changes in tissue elasticity are generally correlated with its pathological state. But
change in mechanical properties of cancer tissues can’t be detected by normal ultrasound
imaging. Correlation based methods for ultrasound imaging are simpler, cheaper but posses their
own limitations Research shows that, normal correlation can’t detect cancer tissues exactly
because this technique gives false peak of the signal. Therefore, people are trying to invent new
ultrasound imaging techniques to detect cancer. For this purpose we worked on, ultrasound based
electricity imaging technique technology which made the process of cancer detection feasible
technically and economically. In our work we construct an elasticity image from the radio
frequency ultrasound signals acquired before and after applying a physical pressure in the region
of interest. From our thesis we observed that, normal B-mode imaging real ultrasound RF data
and synthetic ultrasound data cannot detect the cancer or hard tissue surrounding by normal
tissue. So, block and frame compression techniques are done 1n this thesis to improve the strain
image. But the research shows, in real time the enhancement does not reach to the benchmark.
On the other hand, block and frame compression techniques based strain image provide
significantly informative image for the cancer identification. The signal processing task for
generating a strain image 1s estimation of local compression throughout the scan region. The
performance comparison between these two techniques 1s quite similar but computational time 1s
a factor in the algorithm between these two techniques. Frame compression technique provides a
faster algorithm than block compression technique. Finally constructed strain image 1s smooth by

using a median filter.
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5.2 Future Works

Correlation based methods for ultrasound imaging are simpler, cheaper but posses their own
limitations. False peak of the signal occurs in this method which 1s an obstacle to detect cancer.
In our work, this obstacle have been removed by using block and frame compression techniques
which gives significantly informative strain image for identification of cancer tissues. But in our
work we can’t develop any algorithm for window size and compression factor for identification
of cancer. So, algorithm development for window size as well as compression factor can be
another prospective work for our developed techniques where efforts should be given. The
relation between tissues elasticity and pathological classification can be a future arena of
research. Then it will be possible to discriminate between benign and malignant tumors. The
identification of strain image texture can be another field of work where efforts should be given.
In addition, it is expected that in future, tissues elasticity imaging technology will be more
sophisticated leading to the three dimensional strain image estimation as well as the quantitative
study of elasticity images for different stages of diseases will take place. Finally, the remedy of
consequences of correlation based strain imaging can be a prospective fields as this technique

still its appeals.
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