
CPTSW: An Efficient approach for

Mining static Weighted Frequent

Patterns From Data Stream

AUTHORS

Safa Marwa Moonmoon

2015-1-60-026

MD. Mominul Islam

2015-1-60-147

Tasnim Jahan Munny

2015-1-60-038

SUPERVISED BY

Jesan Ahammeds Ovi

Lecturer, Dept. of CSE, East West Univeersity

A thesis submitted in partial fulfillment for the

degree of B.Sc. in Computer Science and Engineering

in the

Department of Computer Science and Engineering

EAST WEST UNIVERSITY

February 2020

safamarwamoonmoon026@gmail.com
rokimoulik@gmail.com
tasnim@gamil.com
jesan.com
Department or School Web Site URL Here (include http://)
University Web Site URL Here (include http://)

Declaration of Authorship

We, Safa Marwa Moonmoon, MD Mominul Islam , Tasnim Jahan Munny declare that

this thesis titled, ”An Efficient approach for Mining static Weighted Frequent Patterns

From Data stream” and the work presented in it are the outcomes of investigation

performed by us under supervision of Lecturer Jesan Ahammed Ovi, Department of

Computer Science and Engineering,East West Univercity. We also declare that no part

of this thesis has been or is being submitted elsewhere for the award of any degree or-

diploma.

Jesan Ahammed Ovi

Lecturue

Department of Computer Science and Engineering

East West Univercity

Thesis Supervisor

Signature and Date of Supervisor:

Safa Marwa Moonmoon MD. Mominul Islam Tasnim Jahan Munniy

(ID: 2015-1-60-026) (ID: 2015-1-60-147) (ID: 2015-1-60-038)

Signed: Signed: Signed:

Date: Date: Date:

i

”Nature loves to mystery!The mysterious human mind is more mysterious than the com-

plexity and mystery of all the stars.”

-Humayun Ahmed

EAST WEST UNIVERSITY

Abstract

Department of Computer Science and Engineering

Bachelor in Science

by

Safa Marwa Moonmoon

2015-1-60-026

MD. Mominul Islam

2015-1-60-147

Tasnim Jahan Munny

2015-1-60-038

In the recent year data mining is one of the most demanding sectors of computer sci-

ence which basically deals with discovering frequent patterns by using methodologies,

techniques and intelligence tools from databases. As the modern technology is growing

rapidly, high volume of data with several features are generated by modern applications.

When data set’s flowing velocity is high but applications demand real time analyzing of

data depends on immediate features then situation has become more challenging. Several

researches has been made in order to assuage the challenges regarding data streams.To

find the actual patterns as though the nature of data sets is streams, frequent patterns

of those data may be huge and requires further mining. Today’s generation are very

much interest in patterns that are significant for them and not just all frequent pat-

terns. Already many researchers work with this topic but they are not enough sufficient.

In this thesis we proposing a novel tree based approach, CPTSW-growth which is able

to capture the uncertain data streams depending on the importance of applications and

only produces significant patterns.

University Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)
safamarwamoonmoon026@gmail.com
rokimoulik@gmail.com
tasnim@gamil.com

Acknowledgements

First of all, We would like to thank our thesis supervisor MD. Jesan Ahmed Ovi of the

Department of Computer Science Engineering at East West University. He consistently

allowed this thesis to be our own work,but steered us in the right direction whenever he

thought we needed it.The consistent guidance from him has made this work come into

fruition. his door was always open for us whenever we came to any problems,needed any

help or had any question. this accomplishment would not have been possible without

him.

Finally, we must express our very profound gratitude to our parents for providing us

with unfailing support and continuous encouragement throughout our years of study

and through the process of researching and writing this thesis. Thank you.

Author

Safa Marwa Moonmoon

MD. Mominul Islam

Tasnim Jahan Munny

iv

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

List of Figures vii

List of Tables viii

Abbreviations ix

1 Introduction 1

1.1 Motivation . 2

1.2 Challenges . 2

1.3 Objective . 3

1.4 Contribution . 3

1.5 Outline . 4

2 Related Works 5

2.1 Background study . 5

2.1.1 Frequent pattern mining . 5

2.1.2 Incremental and interactive pattern mining 6

2.1.3 Weighted frequent pattern mining 7

2.1.4 Data streams . 8

2.1.5 Batch Size . 8

2.1.6 Window size . 8

2.2 Important data mining Techniques and Procedures 9

2.2.1 Data Stream Tree (DS-tree) . 9

2.2.1.1 Tree construction (DS-Tree) 9

2.2.1.2 Mining process of DS-Tree 11

2.2.2 Weighted frequent pattern mining over Data streams (WFPMDS) 11

2.2.2.1 Tree Construction (WFPMDS) 15

2.2.2.2 Mining Process of WFPMDS 15

2.2.3 Dynamic weighted Frequent pattern mining (DWFPM) 16

v

Contents vi

2.2.3.1 key Ideas . 16

2.2.3.2 Tree construction(DWFPM) 17

2.2.3.3 Mining process of DWFPM 18

2.3 Related Works and differences with our Approaches 22

3 Proposed Approach 23

3.1 Overview . 23

3.2 Our goals . 24

3.3 preliminaries . 24

3.4 Tree construction . 25

3.5 Mining process . 29

3.6 Analysis of CPTSW-growth algorithm . 30

4 Experimental Result 34

4.1 Datasets . 34

4.1.1 Mushroom . 35

4.1.2 Chess . 37

4.1.3 General Characteristics of Dataset 37

4.2 Environment setup . 37

4.3 Experimental Result Analysis . 38

4.3.1 Effect of Run-time variation with different thresholds 38

4.3.2 Effect of window size variation . 40

4.3.3 Memory consumption analysis . 41

4.3.4 Runtime Distribution . 43

4.3.5 Scalability of CPTSW . 43

4.4 Conclusion . 43

5 Conclusions 44

5.1 Research Summary . 44

5.2 Future works . 45

Bibliography 46

List of Figures

2.1 A simple tree for capturing data stream 10

2.2 DS-Tree after each batch of transactions is added for stream mining. . . . 11

2.3 WFPMDS tree after first batch of transactions is added for stream mining. 12

2.4 WFPMD tree after second batch of transactions is added for stream mining. 13

2.5 WFPMDS Tree after third batch of transactions is added for stream mining. 13

2.6 WFPMDS after After Deleting Batch1. 13

2.7 WFPMDS tree and Header-Table After Inserting Batch 4. 14

2.8 WFPMDS Conditional tree for item ‘a’. 14

2.9 Mining Process of WFPMDS Conditional tree for item-set ‘ab’. 14

2.10 Mining Process of WFPMDS Conditional tree for item ‘b’. 14

2.11 DWFPM after after inserting first Batch. 17

2.12 DWFPM after after inserting first and second Batch. 17

2.13 DWFPM after inserting first, second and third Batch. 18

2.14 DWFPM Prefix tree of item “e”. 19

2.15 DWFPM conditional tree of item “e”. 19

2.16 DWFPM Prefix Tree of item “d”. 20

2.17 DWFPM conditional Tree of item “d”. 20

2.18 DWFPM Prefix Tree of item “dc”. 20

2.19 DWFPM Prefix Tree of item “c”. 20

2.20 DWFPM Conditional Tree of item “c”. 21

2.21 DWFPM Prefix and Conditional Tree of item “b”. 21

3.1 Example of a transaction data stream with weight table. 24

3.-2 Procedure of Tree Construction and Restructuring. 28

3.-1 Mining operation . 30

4.1 Runtime Analysis: CPTSW . 39

4.2 Window size analysis . 41

4.3 Memory Analysis . 42

vii

List of Tables

2.1 Simple Transaction Table . 9

2.2 Transaction Table. 10

2.3 Example of a transaction data stream with weight table (WFPMDS). . . 12

2.4 An example of transaction database with dynamic weights. 16

2.5 DW support calculations of the candidate patterns. 21

4.1 Mushroom Dataset. 35

4.2 Chess Dataset. 36

4.3 Characteristics of Dataset. 37

4.4 Environment Setup . 38

viii

Abbreviations

GMAXW Global Maximum weight

LMAXW Local Maximum weight

ix

Dedicated to our parents.

x

Chapter 1

Introduction

“Data mining is the process of extracting hidden patterns of data according to different

aspects for categorization into useful, significant and interesting information, which is

collected and combined in common areas, such as for efficient analysis, data warehouses,

facilitating business decision making ,data mining algorithms, and other information

requirements to increase revenue and cut costs”.

The methods of data mining are classification, regression, clustering and pattern mining.

Pattern mining is the most important role in data mining. Pattern mining covers the

maximum field such as frequent pattern mining, sequential pattern mining, graph mining

et cetera [1–5]. But in the real world, pattern mining is not enough for knowledge

discovering. Because in the real scenario different items has different value. For an

example, a shop has different type of dress. But all dresses are not same price. If

frequent pattern mining is applied in this scenario then it will give the unexpected

value. That’s why weighted frequent pattern mining is applied in this filed. Weighted

frequent pattern mining [6–11] is more useful for extracting the useful knowledge and

interesting pattern because different items has different weight. In real world weighted

pattern mining is applied in different type of area such as web traversal and market

value analysis. And the most important field is biomedical data analysis because there

are many types of gene and those are not same, any disease are not caused by single

gene but also it is caused by a sequence of gene where different gene is carried different

information. In recent decade, automatic measurement such as different type of sensors

value is produced a large amount of data and constantly highly increased. Resultants,

this large amount of data is flooded. That’s why Data Steam [12–15] algorithm was

introduced. Data Stream algorithm used for the knowledge extracting from continuous

data, rapid-data, continuous record. Many data stream algorithm is used for predict the

class or new instances. Examples of data streams include phone conversation , ATM

1

Chapter 1 Introduction 2

transactions, Web searches and some sensors data is continuous and unbounded[16–20].

But the problem is if weighted frequent mining pattern mining is applied here it would

be more critical and generate large amount of false pattern. And the important thing

is maximum time very old data is not needed. For an example, weather sensor gives

the continuous data, when the mining algorithm is applied on this data then it gives so

many unnecessary patterns those are not interesting. Because there has so many old

data and time has changed so old data is not needed anymore. That’s why sliding base

data streams is applied in this scenario and this algorithm find the latest information

from the data stream.

1.1 Motivation

In recent decade, automated measurement and collection of data has produced large

amounts of data. Resultantly, development in technology have led to a flood of data.

For examples of data streams contain sensor database, call center data records , net-

work traffic so on. This erect volume and high speed posture breed great challenge

to mine data sets for the data mining researcher association . Stream of data exhibit

several unique characteristics: concept-drift, infinite length, feature-evolution concept-

evolution, and confined labeled data. The underlying concept of data changes over time

generates Concept-drift in data streams. Concept-evolution happens when new classes

develop in streams. When features vary with time in data streams Feature-evolution

occurs. Scarcity of labeled data is another challenges in data stream so it is not proba-

ble to manually label each and every data points in the stream. Each of these exorcism

adds a challenge to mine data streams. Researchers have introduced weighted frequent

dataset mining algorithms which reflect the worth of items. Their main focus of weighted

frequent dataset mining suspense fulfil the downward closure property. Every weighted

association rule mining algorithms based on the Apriori algorithm. however algorithms

of pattern growth are more feasible than Apriori based algorithms.

1.2 Challenges

In this research pattern growth mining approach is proposed to solve weighted frequent

pattern mining for data dream mining, which supports the downward closer property.

This takes time and memory. The main challenges is to compact the prefix tree of the

previous work weighted frequent pattern mining for Data stream (WFPMDS) algorithm.

This needs to be done by restructuring the prefix tree by swapping the nodes according

to the frequency count value.

Chapter 1 Introduction 3

1.3 Objective

Pattern mining is a form of data mining, for example itemset mining in retail market

analysis, has been proved to be the most essential and useful scenario in daily life.

But in real life problems are not simple. Real life problems are much more difficult

and complex than item set mining. For representing complex objects graph is the most

useful tool, so graph mining has become the most important part of data mining. Graph

has an effective representational power that has been promoted by authorizing weights

on relations in objects. Goals of this thesis is to:

1. Finding interesting weighted frequent patterns from databases.

2. Reduce memory use by compacting the prefix tree.

3. Ensure that proposed approach better performance than previous approaches.

4. Explain the scalability of the proposed approach.

1.4 Contribution

Motivated by real world scenarios, sliding window based technique WFPMDS (weighted

Frequent pattern mining over Data Stream) is introduced. By using single scan, it

can extract useful recent wisdom from data streams. However, this algorithm requires

less mining time and uses less compact prefix tree. Comparing with [1, 17, 21? –27]

mining from traditional static databases and mining from continuous data flow is more

demanding problem. Our main focus is to solve all this problem together. Our main

contributions of this paper include:

• A highly compact tree structure – compact pattern tree for static weights (CPTSW)

is introduced to mine frequent patterns with static weights that significantly flour-

ishes the performance with single database scan.

• A single scan mining algorithm is exhibited that can be wielded for finding weighted

frequent patterns over data stream.

• Path adjusting method that works base on phase by phase tree restructuring

method which enhances the degree of prefix in the tree formation.

• Through comprehensive experimental study pattern growth mining approach were

observed for weighted frequent pattern mining.

Chapter 1 Introduction 4

Our technique transacts a pattern growth mining approach to fudge the level-wise can-

didate generation and test problem. Our technique can be applied to mining web path

traversal patterns as well as retail market data. It can be useful in biomedical research

and DNA analysis. As different web pages has different importance values, this algorithm

can extract very useful knowledge about weighted frequent web path traversals using

only one database scan in real time. Moreover for detecting certain disease,drugs and

medicine that can be used by detecting the combination and amalgamation of weighted

gene patterns. Stock market, sensor networks, telecommunication data are the other

application of our algorithm.

1.5 Outline

Rest of the report is organized as follows:

− Chapter 2: Relevant background studies and weighted pattern mining for data

stream mining related works.

− Chapter 3: Complete simulation on sample database of our proposed method.

− Chapter 4: Description, experimental result and comparison with existing models.

− Chapter 5: Summery of the whole research work and future research scope of this

thesis.

Chapter 2

Related Works

this chapter we will discuss about the related topics, procedures of different types that

will help us to implement our works and solve our problems. Background topics of

our works and important concepts will also focused. This chapter will be start by

giving illustration of important technicalities. At first we will discuss about frequent

pattern mining , weighted frequent pattern mining , data streams and different types of

parameters related to such data.

2.1 Background study

To set the platform for this work, we start by introducing the notion of frequent pattern

mining, incremental and interactive pattern mining, weighted frequent pattern mining

and data streams. Subsequently, we narrate the main demanding problem in weighted

frequent pattern mining for data streams.

2.1.1 Frequent pattern mining

Pattern mining is a formation of using/developing data mining algorithms to discover

interesting, unexpected and useful patterns in databases. Finding frequent patterns,

casual structures, associations from data sets such as relational databases, transactional

databases are known as frequent pattern mining. This process helps us to find the rules

that enable us to calculate or predict the occurrence of specific item based on the fre-

quency or occurrence in the dataset. For example, a set of items, such as new born baby

milk and diaper that come frequently together in a transaction data set is a frequent item

set. A substructure can prescribe to different structural formation, such as sub graphs,

sub trees, sub lattices, which may be joined with item sets. I case a substructure appears

5

Chapter 2 Related Works 6

frequently in a graph database, it is called a frequent structural pattern. A sub sequence

like buying first a computer, then a memory card and then a digital camera, in case it

occurs frequently in a purchasing memoir database, is frequent sequential pattern. Fur-

ther more, it helps in classification, data indexing, clustering, and several data mining

tasks. Frequent pattern mining is an important data mining persuasive in data mining

research. Abundant literature has been introduce scalable and efficient algorithm for fre-

quent pattern mining in transactional database to mainfold research such as sequential

pattern mining, correlation mining, frequent pattern-based clustering, structured pat-

tern mining, associative classification and correlation mining. Basic solution of frequent

pattern mining is Appriori algorithm which is very effective and useful in association rule

mining. Several database scan and level-wise candidate generation-and-test problem are

corns of Appriori algorithm. Fp-growth algorithm solves this problem by applying two

database scan and Fp-tree-based solution without any candidate formation

2.1.2 Incremental and interactive pattern mining

Data mining is an interactive procedure in nature. That method run modify the mined

dataset , or the parameter of the previous mined database in each recurrences when

users issues continuous series of similar type of data mining queries. The results of

previous queries are required by Incremental mining algorithms. Incremental mining is

such a data mining technique which can be applied for dynamic conditions or environ-

ment where database grows frequently. By utilizing the same data structure or prior

mining results, with different minimum support threshold interactive data mining can

be possible. Interactive data mining encourages users’ learn, improve and understand

of the problem to be solved, and stimulate users to investigate creative possibilities.

Some research works [28] have developed incremental and interactive mining algorithms

based on traditional frequent pattern mining algorithm. AFPIM has been improved

incremental mining performance readjusts an Fp-tree using path adjusting mechanism.

While database is growing and shrinking CanTree builds (1st book references) transac-

tions in canonical order and sustains the whole database information in a tree. It has

proposed the” build once mine many “property. CanTree is improved by CP-tree[28] by

restructuring the incremental prefix-tree according to frequency descending order. That

shows that their incremental prefix tree are quite enable and effective using currently

available memory size in gigabyte range. Inc- WTP and WssWTP [28] are developed

for incremental an interactive mining of web traversal patterns.

Chapter 2 Related Works 7

2.1.3 Weighted frequent pattern mining

A weight of an item is a non-negative real number which is assigned to reect the impor-

tance of each item in the transaction database[6, 8]. For a set of items I = i1,i2,......in,

weight of a pattern Px1,x2,.......x2 is given as follows:

Weight(P) =

∑length(p)
q=1 Weight(Xq)

length(P)
. (1)

A weighted support or frequency of a pattern is defined as the value that results from

multiple pattern support with the weight of the pattern [6, 8]. So , the weighted support

of a pattern, P, is given as follows.

Wsupport(P) = Weight(P)× Support(P) (2)

A pattern is called a weighted frequent pattern if the weighted support of the pattern is

greater than or equal to theminimum threshold [6, 8]. A weighted support of a pattern

is defined as the resultant value of multiplying the pattern’s support with the weight

of the pattern [6, 8]. A pattern is called a weighted frequent pattern if the weighted

support of the pattern is greater than or equal to the minimum threshold [6, 8]. In the

very beginning some weighted frequent pattern mining algorithms WARM [10], WAR

[29] have been developed based on the Apriori algorithm [1, 6] candidate generation-and-

test paradigm. WFIM [6] is the first FP-tree based weighted frequent pattern mining

algorithm using two database scans over a static database. They have used a minimum

weight and a weight range. Items are given fixed weights randomly from the weight

range. They have arranged the FP-tree [3]in weight ascending order and maintained they

downward closure property [3] on that tree. To extract the more interesting weighted

frequent patterns, WIP [8] algorithm introduces a new measure of weight-confidence to

measure strong weight anity of a pattern. “The WFIM [6] and WIP [8] algorithms shows

that the main challenges of weighted frequent pattern mining is that weighted support

of an item set does not have the downward closer property . Consider that item “a

“has weight 0.6 and frequency 4, item “b” has weight 0.2 and frequency 5 ,and item set

“ab” has frequency 3. According to equation (1) , the weight of item set “ab” will be

(0.6=0.2)/2 =0.4 , and according to equation (2) it’s weighted frequency will be 0.4 *

3= 1.2. The weighted frequency of “a” is 0.6 * 4 = 2.4, and of “b” is 0.2 *5 =1.0. If

minimum threshold is 1.2, then pattern “b” is weighted infrequent but “ ab ” is weighted

frequent. WFIM and WIP maintain the downward closure property by multiplying each

item set’s frequency by the maximum weight. In the above example, if item “a” has the

maximum weight 0.6, then by multiplying it with the frequency of item “b”, the result

Chapter 2 Related Works 8

will be 3.0. so , pattern “b” will not be pruned at the early stage, and pattern “ab” will

not be missed. At the final stage, this overestimated pattern “b” will finally be pruned by

using its actual weighted frequency.” Some research works[5, 30–32] proposed single-pass

mining algorithm based on traditional frequent pattern mining. Research works[12–14]

developed algorithm for finding frequent pattern mining over data streams.[15, 33, 34]

research works has developed frequent patterns from data streams using sliding windows.

However, these research works, not applicable for weighted frequent pattern mining.

2.1.4 Data streams

Data stream means that data flows in a system in vast volumes, change dynamically and

apparently infinite. This kind of data also can comprise multidimensional features. For

this characteristics, data streams cannot be stored in traditional database system. Most

of the system can be able to read streams once in sequential order. Data flows quickly in

data streams, so there is no such luxury to scan or read data base multiple time for mining

like other traditional database systems. That’s why building effective methods of mining

data streams is more challenging than mining traditional database mining. To develop

effective methods of mining such data streams database sequential research is effective.

Different procedures, methods and algorithms are implemented by several researchers

in order to develop frequent pattern from data streams [15, 35, 36]. This subsumes,

collecting information from data stream in sliding windows or title windows that has

been explored techniques like limited aggregation, micro-clustering and approximation.

There are many application of data streams such as real time detection of anomalies in

computer traffic, video stream, web search, text stream, sensor networks and so on.

2.1.5 Batch Size

Batch size basically means the number of transactions in one group[37]. Which denotes

how many transaction we consider to store their item value in one partition of each node.

In table 2.1 the batch size is 2 that means every 2 transaction is capture in separate

partition of tree node.

2.1.6 Window size

As we can not hold the whole tree rather than summery of a given time, window size

show us how many batch we have capture in a node[38]. If window size 3 so just 3 batch

we can be captured when 4th batch has come 1st batch will be deleted from the node

and new batch is stored. The tree in Figure 2.1 is an example to denote the window size

Chapter 2 Related Works 9

Batch TID Transactions

1
T1 a,b,c,g,h
T2 a,d,f

2
T3 a,b,e,g
T4 a,d,f

3
T5 a,b,d,e
T6 a,b,c,d,g

4
T7 a,b,c
T8 a,g

Table 2.1: Simple Transaction Table

in 3, so 3 there is 3 partition in every node one for each batch. Where new batch comes

older one is deleted.

2.2 Important data mining Techniques and Procedures

We have already develop our field for discussing some data-mining techniques related

to our works. In this section we will try to illustrate different methodologies and their

differences with our work in short.In the prior section some important differences between

our proposed approach and other related techniques are tried to be given. But it is

essential to discuss about some methods that are actually the main motivation of our

works. In this Section detail portrayal of those topics have to be discussed.

2.2.1 Data Stream Tree (DS-tree)

DS-Tree approach is one of the most efficient technique that deals with uncertain

database. It is based on Fp-growth based tree structure that effectively hold uncer-

tain data and effectively mine the tree to generate all the frequent patterns. Like other

tree based approaches DS-Tree works in two steps 1) Tree construction phase 2) Mining

frequent patterns from tree.

To gain a better understanding of DS-tree, let us consider the following example.

2.2.1.1 Tree construction (DS-Tree)

DS-Tree is designed for data flow or data stream. The construction of the DS-tree only

requires one scan of the streaming data. The tree capturers the contents of transactions

in each batch of streaming data. Data stream has dynamic nature, frequencies of items

are incessantly influenced by the most recent batches and the removal of old batches.

Chapter 2 Related Works 10

Figure 2.1: A simple tree for capturing data stream

Adorning items in frequency dependent order conduct to swapping that causes merging

and splitting when frequencies change[15].

At first In DS-Tree items are arranged according to some canonical order, For example,fig

2.2(A) items can be consistently arranged in lexicographic order. After that items can

be arranged according to particular order depending on items properties such as items

values or validity. The next issue is updating the frequency information at each tree

node when new batches are inserted and old batches are deleted.DS-Tree keeps a list of

frequency counts at each node. When a new batch flow in, it is appended to this list

at each node frequency count in the current batch. In other words the last entry of the

list at node A shows the frequency count of A in the current batch. Whenever next

batch comes in, the list is shifted forward. The last entry shifts and becomes the second

last entry. At the same time the frequency count assembling to the oldest batch in the

window is removed fig 2.2(B).

Batch TID Transactions

first
T1 {a,b,c}
T2 {a}
T3 {a,c}

second
T4 {a,c,d}
T5 {b,d}
T6 {a,b,d}

third
T7 {b,d}
T8 {a,b,c,d}
T9 {a,c}

Table 2.2: Transaction Table.

Here In fig 2.2 minimum support is 3 and the window size(W) is 2. That indicates only

two batches of transactions are kept. When first two batches of transactions flows in,

they are inserted into the DS-Tree and frequency counts in a list of W entries at each

node is kept . For example the node b: 0,1 indicates that the frequency of b is 0 in the

Chapter 2 Related Works 11

(a) After 1st two batch in-
sertion.

(b) After 3rd batch in-
sertion.

Figure 2.2: DS-Tree after each batch of transactions is added for stream mining.

first batch and 1 in the second batch. When the third batch of stream data flows in,

it is inserted in the DS-Tree. The lists frequency counts sifts, the frequency counts for

oldest batch are removed.

2.2.1.2 Mining process of DS-Tree

The usual FP-tree based mining process can be applied to the DS-Tree to find all frequent

item sets. This is because DS-Tree only captures the W = 2 most recent batches of

transactions at that time. If we call the mining process at time ‘T’, we get frequency

itemsets a:4 , a,c :3, a,d: 3, b:4, c:3 and d:5.

2.2.2 Weighted frequent pattern mining over Data streams (WFP-

MDS)

Weight frequent pattern becomes an important research topic in pattern mining and

data discovery area. Weighted Frequent Pattern Mining over Data Stream (WFPMDS)

is one of the important contribution to data mining field [39]. .This approach exploits

a pattern growth mining approach to avoid level-wise candidate generation and test

problem. Extensive performance analyses show that this technique is very efficient for

WFP mining over data stream.

Key concepts of WFPMDS: WFPMDS starts by creating a tree from the data stream

using a single pass. Tree construction phase is same as DStree with one exception here

items are sorted according to the weight to take advantage of GlobalMax weight.

Definition GlobalMax Weight: The global maximum weight, denoted by GMAXW,

is the maximum weight of all the items in the current window.

Chapter 2 Related Works 12

First challenge of this task is that whether a particular item is frequent or not. It can’t

be decided immediately as a item may infrequent now but may be frequent in next batch.

Second, Weighted is considered here so downward property doesn’t hold as a infrequent

item may be frequent when it appeared with higher weighted item.

Batch TID Transactions

first
T1 {a,b,c,d,g,h}
T2 {a,e,f}

second
T3 {b,e,f,g,h}
T4 {a,d,d,g}

third
T5 {a,b,d,e}
T6 {a,b,c,d,g}

fourth
T7 {a,b,g}
T8 {a,c}

(a) Transaction Stream

Items Weight

a 0.6

b 0.5

c 0.2

d 0.35

e 0.5

f 0.3

g 0.4

h 0.38

(b) Weight
Table

Table 2.3: Example of a transaction data stream with weight table (WFPMDS).

Item Weight Frequency

c 0.2 1

f 0.3 1

d 0.35 1

h 0.38 1

g 0.4 1

e 0.5 1

b 0.5 1

a 0.6 2

(a) Header-Table.

(b) Tree Construction.

Figure 2.3: WFPMDS tree after first batch of transactions is added for stream mining.

Chapter 2 Related Works 13

Item Weight Frequency

c 0.2 1

f 0.3 2

d 0.35 2

h 0.38 2

g 0.4 3

e 0.5 2

b 0.5 3

a 0.6 3

(a) Header-Table.

(b) Tree Construction.

Figure 2.4: WFPMD tree after second batch of transactions is added for stream
mining.

Item Weight Frequency

c 0.2 2

f 0.3 2

d 0.35 4

h 0.38 2

g 0.4 4

e 0.5 3

b 0.5 5

a 0.6 5

(a) Header-Table.

(b) Tree Construction.

Figure 2.5: WFPMDS Tree after third batch of transactions is added for stream
mining.

Item Weight Frequency

c 0.2 1

f 0.3 1

d 0.35 3

h 0.38 1

g 0.4 3

e 0.5 2

b 0.5 4

a 0.6 3

(a) Header-Table.

(b) Tree Construction.

Figure 2.6: WFPMDS after After Deleting Batch1.

Chapter 2 Related Works 14

Item Weight Frequency

c 0.2 2

f 0.3 1

d 0.35 3

h 0.38 1

g 0.4 4

e 0.5 2

b 0.5 5

a 0.6 5

(a) Header-Table.

(b) Tree Construction.

Figure 2.7: WFPMDS tree and Header-Table After Inserting Batch 4.

Item Weight Frequency

d 0.35 3

g 0.4 3

b 0.5 5

(a) Header-Table.

(b) Tree Con-
struction.

Figure 2.8: WFPMDS Conditional tree for item ‘a’.

Item Weight Frequency

d 0.35 3

g 0.4 3

(a) Header-Table.

(b) Tree Con-
struction.

Figure 2.9: Mining Process of WFPMDS Conditional tree for item-set ‘ab’.

Item Weight Frequency

g 0.4 3

(a) Header-Table.

(b) Tree
Construc-

tion.

Figure 2.10: Mining Process of WFPMDS Conditional tree for item ‘b’.

Chapter 2 Related Works 15

2.2.2.1 Tree Construction (WFPMDS)

In the process of tree construction, the tree structure is to capture data stream using a

single pass. In tree structure maintain header table to keep an item order. A predefined

value for batch size and window size are fixed this value may come from users. Every

node is built so that it can store as many value as window size. Each node only maintain

item-id and frequency information for each batch. Each partition of the node contains

the value of each batch. When every partition is filled and new batch come older one is

deleted, each value is shifted by one partition and new batch is inserted to new partition.

First, items in the transactions are sorted according to their weight in weight ascending

order. Then transactions are inserted batch-wise into the tree. Each node hold the

frequency of each item alone with the item itself. Here is example when batch1 is

inserted, each node store the frequency of the respected item in the first partition fig

2.3(B). Similarly when second batch come their values are stored in 2nd partition fig

2.4. In the same way batch3 is inserted into tree fig 2.5. When batch4 come as mention

earlier batch1 is deleted fig 2.6, batch2 is shifted in the place of batch1. Also batch 3 is

shifted in the place of batch 2. After that new batch inserted into the third partition.

2.2.2.2 Mining Process of WFPMDS

Consider mining request has come in the current window. Here for each node, value of a

certain node is summed to calculate the value of the node. As weighted pattern does not

follow downward closure property, WFPMDS method does not prune item immediately

by only looking its weighted support. It uses GMAXW to calculate maximum weighted

support of items. The highest probability of an item being frequent is reflected by this

value. The item is pruned if the maximum weighted support is less than threshold

otherwise it as candidate of frequent pattern.

Now we explain mining process for item a. here figure 2.8 item c and e is pruned as their

maximum weighted frequency is less than the threshold limit. But items d,g,b cross the

limit of threshold so they are considered as candidate of higher pattern. The actual

weighted support of ad = 3*.475 <threshold limit hence pruned

Similarly weighted support of ag = 3*0.5 = 1.5 <threshold so pruned. But for ab =

4*0.55 = 2.2 >threshold hence frequent. Thus mining process is originated to generate

all the weighted frequent patterns from data stream.

Chapter 2 Related Works 16

2.2.3 Dynamic weighted Frequent pattern mining (DWFPM)

Weighted Frequent Pattern Mining over Data Stream (DWFPM) is one of the important

contribution to data mining field [40]. DWFPM algorithm is used to prune weighted

frequent pattern from Data streams where weights are dynamic. In our real life dynamic

weighted pattern is so much demanding concept. By the way this DWFPM approach

has significant importance in data-mining as this the first method which can handle

dynamic weighted pattern mining effectively.

2.2.3.1 key Ideas

The main challenges of DWFPM approach is to handle the dynamically changing item

weights. For generate Dynamic weighted support of a pattern p, researchers introduced

called DWsupport(p). This is the value which is actually stored in the tree and use to

generate frequent patterns.

Definition of DWsupport(P):

DWsupport(P) =
N∑
q=1

Weight(P)× Support(P) (3)

Batch TID Transactions Weight

1st
T1 {a,b,d} a b c d e
T2 {c,d} 0.45 0.9 0.2 0.3 0.5
T3 {a,b}

2nd
T4 {b} a b c d e
T5 {b,c,d} 0.6 0.7 0.4 0.5 0.4
T6 {c,e}

3rd
T7 {a, c, e} a b c d e
T8 {a} 0.5 0.3 0.7 0.4 0.45
T9 {a,c}

Table 2.4: An example of transaction database with dynamic weights.

Here (table 2.4) the number of batchesis N, m Weightedj(P) and Supportj(P) are weight

and support of in the jth batch . The value of Weightedj(P) can be calculated by applying

Eq.(3). For example, in the first, second and third batches the DWsupport(P) of pattern

“bd” are ((0.09+0.03)/2)*1 =0.6, ((0.07+0.05)/2)*1 = 0.6 and ((0.03+0.04)/2)*0 = 0,

respectively (table 2.4). So, the total DWsupport of “bd” is (0.6+ 0.6+0) = 1.2. If the

dynamic weighted support is greater than or equal to the minimum threshold, a pattern is

called a dynamic weighted frequent pattern. For example, when the minimum threshold

is 1.2 then “bd” is a dynamic weighted frequent pattern.

Chapter 2 Related Works 17

2.2.3.2 Tree construction(DWFPM)

Throughout this section, the construction process of DWFPM tree structure will be

described that captures transactions having items containing dynamic weights. Like Fp-

tree a header table is sustained.The item id is the first value in the header table .With

in the header table in a batch by batch fashion the frequency and weight fact associated

with an item is kept. An items id and its batch by batch frequency information are

contained by the tree nodes. Consider the database shown in (table 2.4). First the

items are sorted according to lexicographical order in figure 2.11(A), and then they are

inserted into the tree, after pursuing a transaction from the database. Figure 2.11(B)

the transactions from batch 1 is shown in the tree after capturing .After the first batch

insertion in both the header table and tree Separate transaction count information must

be kept for each batch.In the header table only weight information is kept. Figure

2.12(B) presents the tree after inserting the first and second batches of transaction. We

can easily find which transactions have occurred in which batch, as frequency information

is kept separately. For example, from figure 2.13(A) the batch numbers of transactions

can be easily determined. Frequency of “c,d” are 1 and 2 respectively in first batch.

Figure 2.13(B) shows the tree after inserting the first, second and third batches.

Item Weight Frequency

a 0.45 2

b 0.9 2

c 0.2 1

d 0.3 2

(a) Header-Table.

(b) Tree Con-
struction.

Figure 2.11: DWFPM after after inserting first Batch.

Item Weight Frequency

a 0.45, 0.6 2, 0

b 0.9, 0.7 2, 2

c 0.2, 0.4 1, 2

d 0.3, 0.5 2, 1

e 0.5, 0.4 0, 1

(a) Header-Table.

(b) Tree Construction.

Figure 2.12: DWFPM after after inserting first and second Batch.

Chapter 2 Related Works 18

Item Weight Frequency

a 0.45, 0.6, 0.5 2, 0, 3

b 0.9, 0.7, 0.3 2, 2, 0

c 0.2, 0.4, 0.7 1, 2, 2

d 0.3, 0.5, 0.4 2, 1, 0

e 0.5, 0.4, 0.45 0, 1, 1

(a) Header-Table.

(b) Tree Construction.

Figure 2.13: DWFPM after inserting first, second and third Batch.

2.2.3.3 Mining process of DWFPM

All branches of prefixing that item that item are taken with the frequency value of

that item,when a prefix tree is created for the particular item. After that deletes all

frequently itemized nodes, the conditional tree is constructed from the prefix tree. As

weighted pattern does not follow downward closure property, DWFPM method does

not prune item immediately by only looking its weighted support. It uses GMAXW to

calculate maximum weighted support of items. The maximum probability of an item

being frequent is reflected by this value. The item is pruned if the maximum weighted

support is less than threshold otherwise it as candidate of frequent pattern. In this case

the maximum weight calculated within every weight in all of the batches. For example,

in table 2.4 , global maximum weight of item “b” has 0.9. this is referred as GMAXW.

When they are doing the mining operation for a particular item then The local maximum

weight is needed which is not always equal to GMAXW. Another example , in table 2.4

, item “e” does not occur with “b” and “d” . For this reason , the prefix tree of “e” only

contains items “a” and “c”, in the mining operation. Here the local highest weight can

sustain the downward closer property so GMAXW is not used. Among all the item “c”,

“a” and “e”, the local maximum weight for “e” is 0.7. This local maximum weight is

referred to as LMAXW. The probability of a pattern for becoming a candidate is reduced

by using LMAXW instead of GMAXW. Apprehend the database showed in table 2.4, the

tree is build for that database in figure 2.13(B), and the minimum threshold is 1.2. Here

GMAXW is 0.9. frequency list of the dynamic weighted is <a:4.5, b:3.6, c: 4.5, d:2.7,

e:1.8>, after multiplying the total frequency. As a result all items are candidate for a

single element. In bottom up fashion the prefix and conditional trees are constructed

and mined the frequent patterns of dynamic weighted. First of all the prefix tree of the

bottom –most item “e” is generated by taking all of the prefixing item of branches “e”

in figure 2.14 (B). To create a conditional tree, the nodes are removed from the prefix

Chapter 2 Related Works 19

tree, which cannot be a candidate. For item “e” , LMAXW is 0.7. The frequency list

of dynamic weighted <a:0.6, c:1.4 >is generated after mutinying the frequencies in the

header table with LMAXW. Since item “a” has a low frequency of dynamic weighted

with item “e”, it has to be removed to obtain the conditional tree of “e”. The conditional

tree of item “e”is shown in figure 2.15. At this point the candidate patterns “ce” and

“e” are created. The prefix tree of item “d” is generated in figure 2.16. LMAXW is 0.09

here, the dynamic weighted list is <: 0.9, b: 1.8, c:1.8>. The conditional tree of item

“d” is generated by deleting item “a” from prefix tree figure 2.17(B). The conditional

patterns “bd”, “cd”, and “d” are created. In figure 2.18(B) the prefix tree of pattern

“dc” is shown. The dynamic weighted frequency list is <0.9>. So, no conditional tree

is generated. In figure 2.19 the prefix tree of item “c” is created. Here LMAXW is 0.9

. The conditional tree of item “c” is generated by deleting item “b” from prefix tree

figure 2.20(B). At this point the candidate patterns “ac” and “c” are created. In figure

2.21(B) the prefix tree of item “b” is generated. The dynamic weighted frequency list is

<“a:1.8”>and LMAXW is 0.9. It is also the conditional tree for “b”. Patterns “ab” and

“b” are created . The top most item “a” generates last conditional tree. The candidate

must test all patterns, including the actual dynamic weighted frequency using Eq (3).

Table 2.5 shows those calculations.

Weight Frequency

a 0, 0, 1

c 0, 1, 1

(a) Header-
Table.

(b) Tree Con-
struction.

Figure 2.14: DWFPM Prefix tree of item “e”.

Weight Frequency

c 0, 1, 1

(a) Header-
Table.

(b) Tree Con-
struction.

Figure 2.15: DWFPM conditional tree of item “e”.

Chapter 2 Related Works 20

Weight Frequency

a 1, 0, 0

b 1, 1, 0

c 1, 1, 0

(a) Header-
Table. (b) Tree Construc-

tion.

Figure 2.16: DWFPM Prefix Tree of item “d”.

Weight Frequency

b 1, 1, 0

c 1, 1, 0

(a) Header-
Table.

(b) Tree Construc-
tion.

Figure 2.17: DWFPM conditional Tree of item “d”.

Weight Frequency

b 0, 1, 0

(a) Header-
Table.

(b) Tree Con-
struction.

Figure 2.18: DWFPM Prefix Tree of item “dc”.

Weight Frequency

a 0, 0, 2

b 0, 1, 0

(a) Header-
Table. (b) Tree Construc-

tion.

Figure 2.19: DWFPM Prefix Tree of item “c”.

Several tree based algorithms have been proposed for mining uncertain database. Carson

Kai-sang Leung propose DS Tree: Data Stream Tree to mine database for data streams

[2]. In that paper authors only implement sliding window method for capture data

streams. But the problem is that his DS Tree only capture certain items and able to

generate all the frequent patterns not interesting one by giving effective and significant

importance to items. They did not apply weight on the items of the database. Moreover

in DS tree mining procedures algorithms can generate many patterns which may not

interesting to the users depending on the applications. But we our proposed approach

can handle data streams and generate more interesting patterns by applying the weights

Chapter 2 Related Works 21

Weight Frequency

a 0, 0, 2

(a) Header-
Table.

(b) Tree
Construc-

tion.

Figure 2.20: DWFPM Conditional Tree of item “c”.

Weight Frequency

a 2, 0, 0

(a) Header-
Table.

(b) Tree
Construc-

tion.

Figure 2.21: DWFPM Prefix and Conditional Tree of item “b”.

No. Candidate Patterns DWsupport Calculation Result

1 ce:0,1,1
(((0.4+0.4)/2)×1) + (((0.7 + 0.45)/2)× 1)

= 0.4+0.575 = 0.975
Prunned

2 e:0,1,1 (0.4 ×1) + (0.45× 1) = 0.85 Prunned

3 cd:1,1,0
(((0.2+0.3)/2)×1) + (((0.4 + 0.5)/2)× 1)

= 0.25+0.45 = 0.7
Prunned

4 bd:1,1,0
(((0.9+0.3)/2)×1) + (((0.7 + 0.5)/2)× 1)

= 0.6+0.6 = 1.2
Pass

5 d:2,1,0 (0.3 ×2) + (0.5× 1) = 0.1.1 Prunned

6 ac:0,0,2 ((0.5 + 0.7)/2) ×2 = 1.2 Pass

7 c:1,2,2 0.2×1 + 0.4× 2 + 0.7× 2 = 2.4 Pass

8 ab:2,0,0 ((0.9+0.45)/2)×2 = 1.35 Pass

9 b:2,2,0 0.9×2 + 0.7× 2 = 3.2 Pass

10 a:2,0,3 0.45×2 + 0.5× 3 = 2.4 pass

Table 2.5: DW support calculations of the candidate patterns.

of items. Chowdhury Farhan Ahmed propose a novel tree mining which is able to capture

all the data streams and generate interesting patterns [1]. He apply weights on the items

of this datasets. But this prefix tree e was not enough compact. In our proposed work

we want to improve his work by compacting the generated prefix tree for saving memory

space.

Chapter 2 Related Works 22

2.3 Related Works and differences with our Approaches

Related Works and differences with our Approaches Several tree based algorithms have

been proposed for mining uncertain database. Carson Kai-sang Leung propose DS Tree:

Data Stream Tree to mine database for data streams[15]. In that paper authors only

implement sliding window method for capture data streams. But the problem is that

his DS Tree only capture certain items and able to generate all the frequent patterns

not interesting one by giving effective and significant importance to items. They did

not apply weight on the items of the database. Moreover in DS tree mining procedures

algorithms can generate many patterns which may not interesting to the users depending

on the applications. But we our proposed approach can handle data streams and generate

more interesting patterns by applying the weights of items. Chowdhury Farhan Ahmed

propose a novel tree mining which is able to capture the data streams and generate

interesting patterns[39]. He apply weights on the items of this datasets. But this prefix

tree e was not enough compact. In our proposed work we want to improve his work by

compacting the generated prefix tree for saving memory space.

Chapter 3

Proposed Approach

Data mining is one of the most demanding sector in computer science which discover

hidden patterns from large data sets. For finding frequent patterns from different types

of data sets, there are many researches, methodologies, tools, procedures have been

developed. In this thesis is also accomplish such a novel procedure that helps to explore

new branches of data mining sector. In this chapter we explore our proposed word in

great details.

3.1 Overview

In our thesis work we basically league tree three important and most demanding topics

of data mining those re uncertain data, data streams and weighted frequent patterns

that builds new methodology focusing recent demand. Our target is simple but useful.

Our proposed work helps to perfectly capture data streams where data is uncertain and

introduces a mining techniques that ensure only find interesting patterns depending on

user needs. There are many example where data are uncertain like medical database

and student data sets are growing faster in size as a result cannot afford to store whole

the data stream and mine them. It is unnecessary to generate all the frequent patterns

of that huge data stream which may also be huge in size and can be generate without

considering user needs. Generating only those patterns that actually has influence on

application is more efficient and less time consuming. Several researches proposed many

approach to find patterns from databases and also from data streams. But we want

to improve our previous work by reducing consuming time and memory size which is

appropriate for large data sets.

23

Chapter 3 Proposed Approach 24

3.2 Our goals

In this thesis book we propose a new novel approach of capturing uncertain data

streams and finding interesting patterns. We named our approach Compact Pattern

Tree for Static Weights (CPTSW)-growth approach. In later sections we will explain

our CPTSW-growth approach with proper example.

3.3 preliminaries

a data stream could have infinite number of transactions. A sets of transactions are

contained by a batch of transactions. Table 2.3 shows an example of transaction data

stream divided into four batches with equal length. A fixed number of non-overlapping

batches can compose a Window . in our example data stream , we assume that one win-

dow contains tree batches of transactions. Here, batch1,batch 2 and batch3 is contains

by Window 1 . Similarly batch2, batch3 and batch 4 is contains by Window 2.

By multiplying its support in W with its weight, the weighted support of a pattern P can

be calculated over a Window W. Therefore, pattern P is weighted frequent pattern in W

if its weighted support is greater than or equal to the minimum threshold. For example,

“ab” is a weighted frequent pattern in window2 if the minimum weighted threshold

is 2.0. 1,2 and 1 respectively its frequency in batch2 , batch3 , batch4. So the total

frequency is 4 in Window2 . Its weighted support in Window2 is 4* 0.55 =2.2, which is

greater that minimum support 2.

Batch TID Transactions

first
T1 {a,b,c,d,g,h}
T2 {a,e,f}

second
T3 {b,e,f,g,h}
T4 {a,d,d,g}

third
T5 {a,b,d,e}
T6 {a,b,c,d,g}

fourth
T7 {a,b,g}
T8 {a,c}

(a) Transaction Stream

Items Weight

a 0.6

b 0.5

c 0.2

d 0.35

e 0.5

f 0.3

g 0.4

h 0.38

(b) Weight

Figure 3.1: Example of a transaction data stream with weight table.

Chapter 3 Proposed Approach 25

3.4 Tree construction

To build transactions having items with static weights, we construct a compact pattern

tree for static weights (CPTSW). Our CPTSW builds a compact frequency descending

tree with a single database scan. At first transaction of the first batch are inserted into

CPTFW tree according to lexicographic order. After inserting a batch of transactions the

CPTSW tree is dynamically restructured by frequency descending order. In summary

CPTSW tree can be constructed in two phases: Insert phase: Scan all the transaction

of a batch. Transactions are inserted into the tree according to the current item order

and update the Item list (I-list) frequency count of the respective items . Restructuring

phase: rearrange the I-list according to the frequency descending order of the items.

Then rearrange the tree according to newly arrange I-list. The tree construction is

starts with the insertion phase. The first insertion phase is begin with first transaction

of the first batch according to lexicographic order. After inserting all the transaction

of first batch the tree will be restructured. The tree will be restructured with path

adjusting method. Recursive swapping of the adjacent node in the path is applied until

it achieves the new sorted structure. Thus bubble sort method is used for swapping two

nodes. In FP-tree the frequency count of a node cannot be greater than the frequency

count of its parent node. For maintaining that property, Path adjusting method inserts

a new node of the same name as a sibling of the parent node in the tree when the parent

node needs to be exchanged with any child node which has smaller frequency count

value. After swapping, two siblings contains same items, then they should be merged.

Insertion and restructuring are conducted substitute until all transactions of all batches

are inserted and restructured the tree in frequency descending order in batch by batch

fashion. The pseudo-Code for our proposed work is shown in Algorithm 1.

Consider the example database of fig 3.1. At first the items of the first batch are

inserted according to the lexicographic order Fig 3.2 (A). They are already in frequency

descending order so no need to restructure this tree. Fig 3.2 (B) shows the tree after

inserting the transaction of the second batch based on the item order which is achieved by

inserting the first batch. Then the items are sorted in frequency descending order based

on their current frequency which includes their frequency count of both the batches. Fig

3.2 (C) shows the tree after restructuring. It can be easily discovered which transactions

have occurred in which batch as frequency information for each batch is kept separately

in each node in the tree. The fig 3.2 (D) shows the tree structure after inserting the

transactions of the third batch. Fig 3.2(G) is our final CPTSW tree structure which

is achieved by inserting and restructuring all the transaction of all the batches. Our

propose work CPTSW-growth tree structure has the following properties:

Chapter 3 Proposed Approach 26

-

Items Weight I-list

a 0.6 2

b 0.5 1

c 0.2 1

d 0.35 1

e 0.5 1

f 0.3 1

g 0.4 1

h 0.38 1

(a) After inserting 1st batch.

-

Items Weight I-list

a 0.6 2,1

b 0.5 1,2

c 0.2 1,0

d 0.35 1,1

e 0.5 1,1

f 0.3 1,1

g 0.4 1,2

h 0.38 1,1

(b) After inserting 2nd batch.

− Property 1: The items in the tree are sorted according to the frequency descend-

ing order.

− Property 2: The tree structure can be constructed in single database scan.

− Property 3: the total frequency count of any node in the tree is greater than or

equal to the sum of total frequency counts of the nodes children.

Chapter 3 Proposed Approach 27

-

Items Weight I-list

a 0.6 2,1

b 0.5 1,2

g 0.4 1,2

d 0.35 1,1

e 0.5 1,1

f 0.3 1,1

h 0.38 1,1

c 0.2 1,0

(c) After restructuring 2nd batch.

-

Items Weight I-list

a 0.6 2,1,2

b 0.5 1,2,2

g 0.4 1,2,1

d 0.35 1,1,2

e 0.5 1,1,1

f 0.3 1,1,0

h 0.38 1,1,0

c 0.2 1,0,1

(d) After inserting 3rd batch.

-

Items Weight I-list

a 0.6 2,1,2

b 0.5 1,2,2

g 0.4 1,2,1

d 0.35 1,1,2

e 0.5 1,1,1

f 0.3 1,1,0

h 0.38 1,1,0

c 0.2 1,0,1

(e) After restructuring 3rd batch.

Chapter 3 Proposed Approach 28

-

Items Weight I-list

a 0.6 1,2,2

b 0.5 2,2,1

g 0.4 2,1,1

d 0.35 1,2,0

e 0.5 1,1,0

f 0.3 1,0,0

h 0.38 1,0,0

c 0.2 0,1,1

(f) After inserting 4th batch.

-

Items Weight I-list

a 0.6 1,2,2

b 0.5 2,2,1

g 0.4 2,1,1

d 0.35 1,2,0

e 0.5 1,1,0

c 0.2 0,1,1

f 0.3 1,0,0

h 0.38 1,0,0

(g) After restructuring 4nd batch.

Figure 3.-2: Procedure of Tree Construction and Restructuring.

Chapter 3 Proposed Approach 29

3.5 Mining process

In this section, we describe the mining process of our proposed CPTSW-growth tech-

nique. The weighted frequency of an item set does not have the downward closer property

and to utilize this property global maximum weight have to use and this is the main

challenges in this area. GMAXW denoted global maximum weight which means the

maximum weight of all items in the global database. In our example fig 3.2 (G) the “a”

has the global maximum weight 0.6 for Window1 and Window2. The local maximum

weight, denoted by LMAXW, is needed when we are doing the mining operation for

a particular item. Our tree is in weight descending order, so we get advantage in the

top-down mining operation. The local maximum weight LMAXW is needed while doing

the mining operation for a particular item, it is not always equal to GMAXW.

As our CPTSW tree is sorted according to frequency descending order, LMAXW could

be anywhere for a particular item. We start our mining operation from the top-most

item of the CPTSW tree structure. So for this case, LMAXW is the weight of the first

item for sure. After that for the second item, compare its weight with the previous

LMAXW and consider the larger one as the current LMAXW. By moving in this way,

LMAXW calculation for each time can be saved. We consider the database presented

in table 3.1, the tree constructed for that particular database in fig 3.2(G) and the

minimum threshold is 1.3. Here GMAXW is 0.6 . After multiplying GMAXW with

the total frequency of each item, we get a: 0.6* 5= 3.0, b: 0.6 * 5= 2.5 , g: 0.6 *

4=2.4 , d :0.6*3=1.8 , e: 0.6*2 =1.2, c: 2*0.6 =1.2 ,f:1*0.6 =.6 , h= 0.6*1= 0.6 . so

“a” , “b” , “g” ,”d” items are single element candidates. We start our mining process

with the top-most item “a” CPTSW tree. For “a” LMAXW is 0.6 , frequency of “a” is

1+2+2=5 . By multiplying the frequency of “a” with LMAXW of “a” we get 0.6*5=

3.0 , which is greater than minimum support threshold 1.3. So, single element pattern

“a” is generated. After that, we consider item “b “as it is the second top-most item in

fig 3.2(G) . So prefix tree of “b” is created by taking all branches prefixing item “b”

as shown in fig 3.3(A) . The nodes that cannot be candidate patterns must be deleted

from the prefix tree for creating conditional tree. For item “g” , LMAXW is 0.4 . After

multiplying the frequency of the item “g” in the header table shown in fig 3.1 , We

get 4*0.4 =1.6 . As the value is greater than the minimum support threshold value,

that is 1.3, so no node should be deleted from the prefix tree. From the fig 3.3(B) the

frequency of “b” is 4 , LMAXW of “b” is 5 . we get bg= 0.5 *4 =2.0 which is greter

than minimum threshold . From fig 3.3(C) frequency of “a” is 3 and LMAXW is 0.6, so

we get abg: 3* 0.6 = 1.8 , which is greater than 1.3. So, the candidate patterns “abg”

and “bg” are generated at this point.

Chapter 3 Proposed Approach 30

-

Items I-list

a 1,2,1

(a) Conditional and prefix tree for ’b’

-

Items I-list

a 1,1,1

b 2,1,1

(b) Conditional and prefix tree for ’g’

-

Items I-list

a 1,1,1

(c) Conditional and prefix tree for ’bg’

Figure 3.-1: Mining operation

From fig 3.1we get frequency of “d” is 1+2+0=3 and LMAXW of “d” is 0.35 , so d:

3* 0.35= 1.05 which is less than 1.3 that is our minimum threshold. So “ d” is not

candidate item. Thus all the items in I-list of fig 3.1 is conducted for finding out all the

candidate patterns of our example database. The pseudo code of the mining procedure

is illustrated in Algorithm 2 and operations are shown in fig 4 .

3.6 Analysis of CPTSW-growth algorithm

working principle of CPTSW-growth approach with proper example was discussed in

great details in the previous sections. now details description of the algorithm are

explored in this section.

Algorithm 1 shows that how to construct our proposed tree. Tree is constructed by

batch by batch. After getting full batch of transactoins then this batch of information

will be inserted into the tree. But Every time getting new batch of transactions then

deleted will be the oldest batch of the tree. Every item of the oldest batch and their

Chapter 3 Proposed Approach 31

number of frequency will be deleted from the HeaderTalbe. New inserted batch and

their frequency count of each items are updating to the headertable. then applying path

adjusting method function. This function check total number of frequency of every item

of the tree. If any count of parent item is less than their children. Then these two node

will be exchanged and all children will be deleted from children node and these children

will be assigned in the parent parent node. Now This parent will be children of that

children node. So now children in parent and parent is children. This procedure will

be continued until all node not will be decreasing order. When swap of the two nodes

then parent of the frequency count of parent node is deleted from the frequency count

of children node. If frequency count of parent node is not equal to zero then this node

should be exist otherwise is deleted.

Then checking every item of the tree branch by branch. If a parent node has same

children then between two children will be merged.e Now rest of the children of this

children items will be the same parent node.

Another important part of mining procedure. This procedure will be bottom up ap-

proach. At first we take the GMAXW as the maximum weight from the all items. Then

test the every item is candidate or not. If this item is candidate then check we take

this item and finding the prefix tree with the recursive algorithm. Then we take the

LMAXW as the maximum value of this current pattern. The next item of the prefix tree

is testing, this pattern is candidate or not. A pattern is passed when we calculate the

minimum support of this candidate pattern. If minimum weighted support is greater

than or equal the minimum weighted support then this pattern will be passed otherwise

will be prunned.

Chapter 3 Proposed Approach 32

Algorithm 1 Tree restructured method

1: procedure Tree restructure(root node, weighted table, HeaderTable)
2: Tree traverse(root node, HeaderTablee)
3: function Tree traverse(root, HeaderTable)
4: if len(root.children()) ≥ 1 then
5: for each child ∈ root.children do
6: if HeaderTable[child.name] > HeaderTable[root.name] then
7: Exchange node(root, child) . call exchange function
8: Tree traverse(root.parent, HeaderTable) . recursive call
9: else

10: Tree traverse(child, HeaderTable)

11: function Exchaneg node(X,Y)
12: Z ← new node
13: Z.name = Y.name
14: Z.parent = X.parent
15: X.delete all children()
16: Z.children← X
17: if len(Y.children) 6= 0 then
18: Z.children← Y.children
19: Y.delete all children()

20: Z.window = Y.window
21: X.window− = Y.window
22: Delete(Y)
23: if X.count == 0 then
24: Delete(X)

25: Merge node(root node) . now call Marge node() function

Algorithm 2 Merge siblings

1: procedure Merge node(root)
2: for each X ∈ root.children do
3: for each Y ∈ root.children do
4: if X 6= Y & X.name == Y.name then
5: X.window = X.window + Y.window
6: X.children = X.children+ Y.children
7: Y → False
8: Delete(Y)

9: for each X ∈ root.children do
10: if X = True then
11: Merge node(X) . recursive call

Chapter 3 Proposed Approach 33

Algorithm 3 Mining Procedure

1: input: weightedTable, HeaderTable, minSupport, batchSize, windowSize and root
of the constructed tree

2: CH = new conditional header table
3: rPTree = new root of the prefix tree
4: procedure Minig tree(root, prefixItemset, candidateItemset, HeaderTable)
5: X ← HeaderTable.keys
6: X ← descendingsort(X,X ← HeaderTable.counts)
7: GMAXW ← max(weightedTable)
8: for each v ∈ X do
9: if freq(v) ∗GMAXW >= δ then

10: newItemset = prefixItemset
11: newItemset.add(v)
12: prefixItemset.append(newItemset)
13: Call testCandidate(newItemset) . to check prunned or passed!
14: conditional pattern base←findPrefixPath(v)
15: CH, rPTree← prefixTree(conditional pattern base) . Call prefixTree
16: Call Minig tree(rPTree, newItemset, prefixItemset, CH) . recursive

Chapter 4

Experimental Result

To evaluate the performance of our proposed Method we use several datasets which

are commonly used by data-mining scientists to determine the performance of their

techniques. In this chapter proper description of different datasets followed by the per-

formance of CPTSW-growth approach will be given. We also compare the performance

of our approach to the WFPMDS-growth approach to our works in order to clarify the

advantages of CPTSW-growth as our target is to improve WFPMDS-growth approach.

We present here comparison in three criteria:

1. run time optimization

2. candidate pattern generation reduction

3. memory requirement efficiency

4.1 Datasets

Data mining is all about discovering knowledge from raw data that is extracting ex-

actly those useful information that real matters to different types of applications and

transforming data or datasets to evaluate the performance of our works and indicate the

usefulness of our proposed method in order to finding interesting patters from data. In

this work several real life for example chess, Mushroom datasets and synthesis data set

likes T1014D100K are used to measure the performance of CPTSW-growth. Details of

each datasets are discussed in the following sections.

34

Chapter 4 Experimental Result 35

Data Set
Character-
istics

Multivariate
Number of
Instances

8124

Attribute
Character-
istics

Categorical
Number of
Attributes

22

Data Set
Character-
istics

Classification
Missing
Values

Yes

Table 4.1: Mushroom Dataset.

4.1.1 Mushroom

This data set includes descriptions of hypothetical samples corresponding to 23 species

of gilled mushrooms in the Agaricus and Lepiota Family (pp. 500-525). Each species

is identified as definitely edible, definitely poisonous, or of unknown edibility and not

recommended. This latter class was combined with the poisonous one. So it is clear

that there is no simple rule for determining the edibility of a mushroom; no rule like

“leaflets three, let it be “ for poisonous Oak and Ivy.

Table 4.1 shows the basic characteristics of mushroom data which reflects that data in

Mushroom data sets is multivariate that is analysis is analysis is based on more than two

variables per observation. Attribute is categorical in nature implies each variable has

more than one category but there is no intrinsic ordering to the categories. Description

of attributes are given bellow.

Attribute Information : (class : poisonous =p,edible =e)

− Cap-shape :conical=c ,bell=b, convex =x, knobbed=k ,smooth=s, sunken=s,flat

=f,

− Cap-surface : fibrous =f ,grooves =g, ,scaly=y,

− Cap-colour: gray =g , green =r, buff =b , brown=n, cinnamon=c,pink =p, purple

=u , red =e , white=w

− Brises : no=f,bruises=t

− Odor: spicy=s musty =m,anise=I,almond=a, foul=f , creosote =c, fishy=y, none=n

, pungent =p

− Gill-attachment : notched=n,descending =d, attached=a, free=f

− Gill-spacing : close =c, crowded =w , distant =d

Chapter 4 Experimental Result 36

− Gill-size: yellow=y, narrow=n, broad=b,

− Gill-color: brown=n ,black =k, buff=b , gray =g,chocolate=h , green =r , orange

=o, purple=u, pink =p,red=r , white=w

− Stalk-root :club =c, bulbous =b , cup=u, equal=e, missing=?, rhizomorphs=z,

rhizomorphs=z ,rooted=r, Stak-surface-above-ring : scaly=y ,silky=k,fibrous=f,

smooth=s

− Stalk-surface-below-ring: silky=k ,smooth=s,fibrous=f ,scaly=y

− Stalk-color-above-ring: buff=b,pink=p,brown=n, cinnamon=c, orange=o, red=e,white=w

,gray =g,

− Stalk-color-below –ring: pink =p,brown =n , buff =b,pink=p,brown=n,gray=g , ,

red=e, white=w, cinnamon=c, orange=o

− Veil-type: universal=u,partial=p

− Veil-color: orange =o,yellow=y , brown=n, white =w

− Ring-number : one=o ,none=n,two=t

− Ring-type : evanescent =e, cobwebby=c, flaring=f, large=l,sheathing =s , pendant

=p, zone=z,none=n,

− Spore-printcolor:black=k, buff=b, brown=n, chocolate=h, green=r, orange=o,white=w,purple=u,

− Population : clusterd=c, abundant=a, numerous=n, scattered=s, several=v,solitary=y

,scattered=s,

− Habital: leave=l, meadows=m,,woods=d grasses, paths=p, waste=w, urban=u,

Missing attributes value 2480 of than denoted by”?” . class description: edible 4208

that is 51 % and poisonous 3916 that is 49%

Data Set
Character-
istics

Domain Theory
Number of
Instances

1000

Attribute
Character-
istics

NA
Number of
Attributes

NA

Data Set
Character-
istics

NA
Missing
Values

NA

Table 4.2: Chess Dataset.

Chapter 4 Experimental Result 37

4.1.2 Chess

Chees is a real life dataset built by domain theories to produce the lawful moves of chess

games is one of the widely used dataset by data scientists to evaluate the performance

of their methods. There are several domain theory of chess game such as Employs a

geometric presentation for status ,with every square designed by X,Y coordinate and

square calculated by vectors. Propagates lawful moves by 1st generating pseudo moves

then extracting those that outcome of the moving player who is checked . Some general

information of chess dataset is given in Table 4.2.

4.1.3 General Characteristics of Dataset

Some well-known datasets like T1014D100k , Kosarak etc. are also used to test CPTSW-

growth algorithm . T1014D100k is produced using the creator of IBM Almaden Quest

research group is sparse in nature.original datasets are lebeled and unweighted. Some

important characteristics of datasets that used in our methods to be tested is given in

Table 4.3.

Data Set No. of Trans.
No. of
distinct
value(D)

Avg Trans
length(A)

Dense/Sparse
Characteris-
tic ratio R=
(A/D)*100

Mushroom 8124 119 23 19.327

Chess 3196 75 37 49.33

Kosarak 990002 41270 8.1 .0196

T101D100K 100000 870 10.1 1.16

Table 4.3: Characteristics of Dataset.

4.2 Environment setup

all the analysis is done with same environment setup and software as we can realise the

real differences between the compared algorithm. all the software are stopped at the

time of mining so that we can get better performance and get the actual run-time of our

algorithm.

Environment setup for performance analysis is given in table 4.4.

Chapter 4 Experimental Result 38

CPU Intel Core i5 4th Generation (4590)

RAM 8GB DDR3

OS Windows 10 64-bit

Hard disk 54rpm Western Digital Hardisk

Language Python,version: 3.7.3

Exwcution
softweare

Anaconda Notebook, version: 4.7.10

Graphics
card

2GB AMD saphire graphics card

Table 4.4: Environment Setup

4.3 Experimental Result Analysis

All the Data that are described ,no weight associate with each item are picked up from

FIMI repository, UCI machine learning repository. So first of all some sorts of prepro-

cessing have to be performed on dataset before analysis the result like calculating proba-

bilistic value for items, generating weight so that only application intended patterns can

be mined. several techniques that deals unstable data, generate randomly probabilistic

value for items. But we follow probabilistic distribution to generate uncertain value de-

pending on the demand of application. exploring real life status patterns those frequency

is average which is more wanted rather than highly frequent patterns or which patterns

those are just cross the frequent limit. So we follow normal distribution to engage prob-

ability of data items by giving extreme probability to that items which frequency count

is average and engage lower probability to less frequent data items.Following normal

distribution experimental weight of the items also generate randomly . We perform

analysis of our algorithm in terms of run-time and memory consumed by our proposed

algorithm.

For performance evaluation we are considering three things:

• run-time analysis with different thresholds

• memory consumption

• patterns generation count

4.3.1 Effect of Run-time variation with different thresholds

Performing runtime analysis of our approch we conducted several experiment on data

set T1014D100K , Chess,Kosarak , Mashroom. Thresholds or minimum support is the

most important concept in frequent pattern mining which generate variation in the total

Chapter 4 Experimental Result 39

38 41 44 47 50

100

200

300

400

500

600

700

minimum support threshold(%)

ti
m

e(
S
ec

.)

(a)Chess Dataset

WFPMDS
CPTSW

7.3 8.6 9.8 11.1 12.31
0

10

20

30

40

50

minimum support threshold(%)

ti
m

e(
S
ec

)

(b)Mashroom Dataset

WFPMDS
CPTSW

0.57 0.79 1.13 1.7

·10−2

300

600

900

1,200

1,500

1,800

2,100

minimum support threshold(%)

ti
m

e(
S
ec

)

(c)Retail Dataset

WFPMDS
CPTSW

Figure 4.1: Runtime Analysis: CPTSW

Chapter 4 Experimental Result 40

count of candidate patterns. With the changes of minimum thresholds the runtime varies

as the generated patterns varies. To show the effect of run-time with different thresholds

we choose Chess , Mashroom and Retail datasets which are more dense in nature.

Chess dataset has 3196 transactions with 75 distinct items. Figure 4.1 (a) shows the

effect of runtime with different thresholds. Performing this experiment we set thresholds

1200, 1300, 1400, 1500,1600 so that the runtime variation of different thresholds can be

clearly shown. We record the run-time for entire dataset basically the time changes

is observed without difficulty. X-axis of the graph represents the minimum support

threshold and Y-axis represents the corresponding run-time. In real life altering of

thresholds is meaningful as different applications are searching only that patterns which

have real significance.We perform Similar type of analysis on Mashroom datasets and

Retail datasets. In this time number of transaction are 8124 and respectively . Result

of this analysis are shown in figure 4.1(b) and 4.1(c).

4.3.2 Effect of window size variation

Our proposed method is sliding window based which capture the most current data and

execute mining to recent window so runtime and memory requirement on window size.

so, we change number of batch in a window and number of transactions in a batch to

evaluate the corresponding runtime.while varying window size we choose chess data and

mushroom data to execute runtime analysis. Figure 4.2 shows the effect of runtime

with respect to window size. The X-axis reflect the window size and Y-axis for runtime

in seconds.Performing analysis we set window size 4,6,8,10,12 with chess data set, and

2,4,6,8,10 with mushroom dataset.Figire 4.2(a) and 4.2(b) respectively reflect the effect

of window size on runtime. Batch size of chess data is 250 and threshold was 38%. Batch

size of chess data is 700 and threshold was 7.3%.

Run-time Comparison with WFPMDS- growth algorithm: The existing algo-

rithm WFPMDS-growth algorithm is compatible for mining weighted frequent patterns

from data streams. But as their prefix tree are quite large the mining operation requires

much time. On the other hand, our proposed method CPTSW-growth algorithm gener-

ate more compact prefix tree using path adjusting method, so mining operation needs

less time than WFPMDS-growth algorithm. It is clear as our generated prefix tree is

compacted so that it took less time

Chapter 4 Experimental Result 41

4 6 8 10 12

100

200

300

400

500

600

700

800

window size

ru
n

ti
m

e(
se

c.
)

(a)Chess Dataset

WFPMDS
CPTSW

2 4 6 8 10

10

20

30

40

50

60

70

window size

ru
n

ti
m

e(
se

c.
)

(b)Mushroom Dataset

WFPMDS
CPTSW

Figure 4.2: Window size analysis

4.3.3 Memory consumption analysis

The memory requirement for the prefix tree is low enough to use the gigabyte range

memory available now a days is shown by research on prefix tree based frequent min-

ing. If we can handle our prefix tree we can reduce our memory usage. Our proposed

CPTSW tree can represent information of transaction in a very compressed structure

because transactions have common items.By using more prefix sharing, our CPTDS tree

structure can reduce memory space.

Another experiment has been conducted on CPTSW and WFRMDS methods by show-

ing the effect of memory vs threshold. Chess dataset has 3196 transactions with 75

distinct items. Figure 4.2 describe the effect of thresholds in memory space. to perform

Chapter 4 Experimental Result 42

this experiment we define thresholds 1200, 1300, 1400, 1500,1600 so that the memory

consumption effect of different thresholds can be clearly represented.we record the mem-

ory for entire data set basically the change of time can be easily noticed. In the graph

X-axis represents the threshold and Y-axis represent the corresponding memory . Vari-

ation of thresholds in real life is important as different applications are looking only

those patterns that have real significance. We also performed similar type of analysis

on Mashroom datasets. here , number of transaction are 8124 and respectively . Result

of this analysis are shown in figure 4.2(b).

38 41 44 47 50

300

700

1,100

1,500

1,900

2,300

2,700

minimum support threshold(%)

m
ax

im
u

m
m

em
o
ry

(M
B

)

(a)Chess Dataset

WFPMDS
CPTSW

7.3 8.6 9.8 11.1 12.31

200

300

400

500

600

700

minimum support threshold(%)

m
a
x
im

u
m

m
em

o
ry

(M
B

)

(b)Mashroom Dataset

WFPMDS
CPTSW

Figure 4.3: Memory Analysis

Chapter 4 Experimental Result 43

4.3.4 Runtime Distribution

Recall from 3.1 about our CPTSW tree construction process, CPTDSW requires several

swapping operations to restructure the tree in frequency descending order after the

insertion of the transaction of each batch. So there might arouse an issue that, CPTSW

should requires more time for the tree construction which is true. But our prefix tree is

compact , so our mining time is less than WFPMDS method. We get a significant gain

in overall runtime due to the frequency descending compact structure of tree.

4.3.5 Scalability of CPTSW

our proposed algorithm can easily handle large number of transaction containing datasets

that is shown by the experimental results. Hence the experimental result exhibit the

scalability of our proposed algorithm to manage and mine large number of transaction

and separate item. Our CPTSW algorithm outperforms the existing WFPMDS method

by using proficient tree structure and pattern mining technique in terms of run-time and

memory usage.

4.4 Conclusion

In our thesis work we basically propose a novel tree structure which efficiently success-

fully capture data stream and pattern mining algorithm which extract only significant

patterns from most recent window. for tree construction and mining operations,it claims

only single pass of stream data .This approach suitable to use in real time data process-

ing to discover valuable recent knowledge. Our CPTSW saves time consumption and

memory space by using an efficient tree structure and mining approach . Extensive

performance shows our algorithm can handle a large number of items and transactions.

Chapter 5

Conclusions

In this thesis, we developed a sliding window based strategy of finding weighted patterns

from data stream. Our proposed CPTSW-growth is a complete method that success-

fully capture the uncertain static weighted data and mine only significant patterns that

depends on users interest. In our strategy which patterns are important to users can be

defined by them and mine only those significant patterns. CPTSW-growth just doesn’t

generate all frequent patterns without considering anything but those patterns that have

significant value to the application.

5.1 Research Summary

Throughout this book we organize our works like in Chapter 1 , by discussing current

situation of data mining we introduced our research topic ,why uncertain data is required

in today’s world. Specially in section 1.1 we clearly specify the need of mining methods

for uncertain data stream. Problem of the existing system is also discussed here. In

order to solve the current problems we had to face several challenges. In section 1.2

those challenges are discussed in details. Section 1.4 represent our contribution on data

mining research. To deal with the current problem that is finding weighted patterns from

uncertain data stream we need to research several data mining methods, techniques, tools

in order to establish our approach. Section 2.1 introduce important topics related to our

research. In section 2.1.1 to 2.1.6 contains details description of those topics. In section

2.2 we described those concepts which influenced our work .Here we talked about those

methods that basically inspired us to do our works like DS-Tree, WFPMDS-growth,

DWFPM-growth in section 2.2.1, 2.2.2,2.2.3 . Total summery of current methodologies

that deal with uncertain data and their limitations are discussed in 2.3 . From chapter 3

we basically start describing our actual works. First of all in section 3.2 we set our goals.

44

Chapter 5 Conclusions 45

We introduced several concepts that shape our concept in section 3.3. Finally I n section

3.4 we describe our methods, mining techniques, analysis and so on in detains. Chapter

4 basically shows the experimental results ,analysis of result, several comparisons with

existing method and observing different characteristics of data sets used to analysis our

methods.

5.2 Future works

In our thesis works we basically focus on decreasing mining time and memory require-

ment by compacting prefix tree of WFPMDS-growth method. In future we will try to

apply some other constrain to find more strong and interesting patterns which have more

significance and more realistic to users.

Bibliography

[1] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining association rules

between sets of items in large databases. In Acm sigmod record, volume 22, pages

207–216. ACM, 1993.

[2] Rakesh Agrawal, Ramakrishnan Srikant, et al. Fast algorithms for mining associa-

tion rules. In Proc. 20th int. conf. very large data bases, VLDB, volume 1215, pages

487–499, 1994.

[3] Jiawei Han, Jian Pei, Yiwen Yin, and Runying Mao. Mining frequent patterns

without candidate generation: A frequent-pattern tree approach. Data mining and

knowledge discovery, 8(1):53–87, 2004.

[4] Jiawei Han, Hong Cheng, Dong Xin, and Xifeng Yan. Frequent pattern mining:

current status and future directions. Data mining and knowledge discovery, 15(1):

55–86, 2007.

[5] Syed Khairuzzaman Tanbeer, Chowdhury Farhan Ahmed, Byeong-Soo Jeong, and

Young-Koo Lee. Cp-tree: a tree structure for single-pass frequent pattern mining.

In Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages 1022–

1027. Springer, 2008.

[6] Unil Yun and John J Leggett. Wfim: weighted frequent itemset mining with a

weight range and a minimum weight. In Proceedings of the 2005 SIAM international

conference on data mining, pages 636–640. SIAM, 2005.

[7] Unil Yun and John J Leggett. Wlpminer: weighted frequent pattern mining with

length-decreasing support constraints. In Pacific-Asia Conference on Knowledge

Discovery and Data Mining, pages 555–567. Springer, 2005.

[8] Unil Yun. Efficient mining of weighted interesting patterns with a strong weight

and/or support affinity. Information Sciences, 177(17):3477–3499, 2007.

46

Bibliography 47

[9] Chun Hing Cai, Ada Wai-Chee Fu, Chun Hung Cheng, and Wang Wai Kwong.

Mining association rules with weighted items. In Proceedings. IDEAS’98. Inter-

national Database Engineering and Applications Symposium (Cat. No. 98EX156),

pages 68–77. IEEE, 1998.

[10] Feng Tao, Fionn Murtagh, and Mohsen Farid. Weighted association rule mining

using weighted support and significance framework. In Proceedings of the ninth

ACM SIGKDD international conference on Knowledge discovery and data mining,

pages 661–666. ACM, 2003.

[11] Unil Yun. Mining lossless closed frequent patterns with weight constraints.

Knowledge-Based Systems, 20(1):86–97, 2007.

[12] Chedy Räıssi, Pascal Poncelet, and Maguelonne Teisseire. Towards a new approach

for mining frequent itemsets on data stream. Journal of Intelligent Information

Systems, 28(1):23–36, 2007.

[13] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. An integrated effi-

cient solution for computing frequent and top-k elements in data streams. ACM

Transactions on Database Systems (TODS), 31(3):1095–1133, 2006.

[14] Nan Jiang and Le Gruenwald. Research issues in data stream association rule

mining. ACM Sigmod Record, 35(1):14–19, 2006.

[15] Carson Kai-Sang Leung and Quamrul I Khan. Dstree: a tree structure for the

mining of frequent sets from data streams. In Sixth International Conference on

Data Mining (ICDM’06), pages 928–932. IEEE, 2006.

[16] Yun Chi, Haixun Wang, Philip S Yu, and Richard R Muntz. Moment: Maintaining

closed frequent itemsets over a stream sliding window. In Fourth IEEE International

Conference on Data Mining (ICDM’04), pages 59–66. IEEE, 2004.

[17] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candidate

generation. In ACM sigmod record, volume 29, pages 1–12. ACM, 2000.

[18] Chris Giannella, Jiawei Han, Jian Pei, Xifeng Yan, and Philip S Yu. Mining fre-

quent patterns in data streams at multiple time granularities. Next generation data

mining, 212:191–212, 2003.

[19] Mohamed Medhat Gaber, Arkady Zaslavsky, and Shonali Krishnaswamy. Mining

data streams: a review. ACM Sigmod Record, 34(2):18–26, 2005.

[20] Young-Hee Kim, Won-Young Kim, and Ung-Mo Kim. Mining frequent itemsets with

normalized weight in continuous data streams. Journal of information processing

systems, 6(1):79–90, 2010.

Bibliography 48

[21] Roberto J Bayardo Jr. Efficiently mining long patterns from databases. In ACM

Sigmod Record, volume 27, pages 85–93. ACM, 1998.

[22] Francesco Bonchi and Claudio Lucchese. On closed constrained frequent pattern

mining. In Fourth IEEE International Conference on Data Mining (ICDM’04),

pages 35–42. IEEE, 2004.

[23] Cristian Bucilă, Johannes Gehrke, Daniel Kifer, and Walker White. Dualminer: A

dual-pruning algorithm for itemsets with constraints. Data Mining and Knowledge

Discovery, 7(3):241–272, 2003.

[24] Laks VS Lakshmanan, Carson Kai-Sang Leung, and Raymond T Ng. Efficient dy-

namic mining of constrained frequent sets. ACM Transactions on Database Systems

(TODS), 28(4):337–389, 2003.

[25] Carson Kai-Sang Leung, Laks VS Lakshmanan, and Raymond T Ng. Exploiting

succinct constraints using fp-trees. ACM SIGKDD Explorations Newsletter, 4(1):

40–49, 2002.

[26] Jong Soo Park, Ming-Syan Chen, and Philip S. Yu. Using a hash-based method with

transaction trimming for mining association rules. IEEE transactions on knowledge

and data engineering, 9(5):813–825, 1997.

[27] Jian Pei, Jiawei Han, and Laks VS Lakshmanan. Mining frequent itemsets with

convertible constraints. In Proceedings 17th International Conference on Data En-

gineering, pages 433–442. IEEE, 2001.

[28] Chowdhury Farhan Ahmed, Syed Khairuzzaman Tanbeer, Byeong-Soo Jeong,

Young-Koo Lee, and Ho-Jin Choi. Single-pass incremental and interactive mining

for weighted frequent patterns. Expert Systems with Applications, 39(9):7976–7994,

2012.

[29] Wei Wang, Jiong Yang, and Philip Yu. War: weighted association rules for item

intensities. Knowledge and Information Systems, 6(2):203–229, 2004.

[30] William Cheung and Osmar R Zaiane. Incremental mining of frequent patterns

without candidate generation or support constraint. In Seventh International

Database Engineering and Applications Symposium, 2003. Proceedings., pages 111–

116. IEEE, 2003.

[31] Hao Huang, Xindong Wu, and Richard Relue. Association analysis with one scan

of databases. In 2002 IEEE International Conference on Data Mining, 2002. Pro-

ceedings., pages 629–632. IEEE, 2002.

Bibliography 49

[32] Carson Kai-Sang Leung, Quamrul I Khan, Zhan Li, and Tariqul Hoque. Cantree:

a canonical-order tree for incremental frequent-pattern mining. Knowledge and

Information Systems, 11(3):287–311, 2007.

[33] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A Tucker. No

pane, no gain: efficient evaluation of sliding-window aggregates over data streams.

SIGMOD Record, 34(1):39–44, 2005.

[34] Chih-Hsiang Lin, Ding-Ying Chiu, Yi-Hung Wu, and Arbee LP Chen. Mining

frequent itemsets from data streams with a time-sensitive sliding window. In Pro-

ceedings of the 2005 SIAM International Conference on Data Mining, pages 68–79.

SIAM, 2005.

[35] Md Badi-Uz-Zaman Shajib, Md Samiullah, Chowdhury Farhan Ahmed, Carson K

Leung, and Adam GM Pazdor. An efficient approach for mining frequent patterns

over uncertain data streams. In 2016 IEEE 28th International Conference on Tools

with Artificial Intelligence (ICTAI), pages 980–984. IEEE, 2016.

[36] Syed Khairuzzaman Tanbeer, Chowdhury Farhan Ahmed, Byeong-Soo Jeong, and

Young-Koo Lee. Sliding window-based frequent pattern mining over data streams.

Information sciences, 179(22):3843–3865, 2009.

[37] Ben Shneiderman. Batched searching of sequential and tree structured files. ACM

Transactions on Database Systems (TODS), 1(3):268–275, 1976.

[38] Darius S Culvenor. Extracting individual tree information. In Remote Sensing of

Forest Environments, pages 255–277. Springer, 2003.

[39] Chowdhury Farhan Ahmed, Syed Khairuzzaman Tanbeer, and Byeong-Soo Jeong.

Efficient mining of weighted frequent patterns over data streams. In 2009 11th IEEE

International Conference on High Performance Computing and Communications,

pages 400–406. IEEE, 2009.

[40] Chowdhury Farhan Ahmed, Syed Khairuzzaman Tanbeer, Byeong-Soo Jeong, and

Young-Koo Lee. Handling dynamic weights in weighted frequent pattern mining.

IEICE TRANSACTIONS on Information and Systems, 91(11):2578–2588, 2008.

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Challenges
	1.3 Objective
	1.4 Contribution
	1.5 Outline

	2 Related Works
	2.1 Background study
	2.1.1 Frequent pattern mining
	2.1.2 Incremental and interactive pattern mining
	2.1.3 Weighted frequent pattern mining
	2.1.4 Data streams
	2.1.5 Batch Size
	2.1.6 Window size

	2.2 Important data mining Techniques and Procedures
	2.2.1 Data Stream Tree (DS-tree)
	2.2.1.1 Tree construction (DS-Tree)
	2.2.1.2 Mining process of DS-Tree

	2.2.2 Weighted frequent pattern mining over Data streams (WFPMDS)
	2.2.2.1 Tree Construction (WFPMDS)
	2.2.2.2 Mining Process of WFPMDS

	2.2.3 Dynamic weighted Frequent pattern mining (DWFPM)
	2.2.3.1 key Ideas
	2.2.3.2 Tree construction(DWFPM)
	2.2.3.3 Mining process of DWFPM

	2.3 Related Works and differences with our Approaches

	3 Proposed Approach
	3.1 Overview
	3.2 Our goals
	3.3 preliminaries
	3.4 Tree construction
	3.5 Mining process
	3.6 Analysis of CPTSW-growth algorithm

	4 Experimental Result
	4.1 Datasets
	4.1.1 Mushroom
	4.1.2 Chess
	4.1.3 General Characteristics of Dataset

	4.2 Environment setup
	4.3 Experimental Result Analysis
	4.3.1 Effect of Run-time variation with different thresholds
	4.3.2 Effect of window size variation
	4.3.3 Memory consumption analysis
	4.3.4 Runtime Distribution
	4.3.5 Scalability of CPTSW

	4.4 Conclusion

	5 Conclusions
	5.1 Research Summary
	5.2 Future works

	Bibliography

