
Analyzing	and	Verification		of		
Web	Service	Composition	

	
By 

Maliha	Tunzira		

&  

Khadeja	Akter	

 

 

 

 

 

 

Computer Science and Engineering  

East West University  

 

Summer 2019 

 

 



Analyzing	and	Verification	of	
Web	Service	Composition		

 

 

Submitted By  

Maliha	Tunzira		

ID : 2013-3-60-010 

& 

Khadeja	Akter		

ID : 2014-3-60-073 

 

 

A project submitted in partial fulfillment of Bachelor of 

Science in Computer Science and Engineering  

In the  

Faculty of Science and Engineering  

Department of Computer Science and Engineering  

 

East West University  

Summer 2019 



i 
 

	

Declaration	

	
We, hereby, declare that the work presented in this thesis solely to be 
our own scholarly work. To the best of our knowledge, it has not been 
collected from any source without the due acknowledgement and 
permission. It is being submitted in fulfilling the requirements for the 
degree of Bachelor of Science in Computer science and Engineering. It 
is the outcome of the investigation performed by us under the 
supervision of Dr. Shamim H Ripon, Professor, Department of 
Computer Science and engineering, East West University. We also 
declare that no part of this thesis/project has been or is being 
submitted elsewhere for the award of any degree or diploma. 

 

 

 

 

Maliha Tunzira 

(2013-3-60-010) 

 

 

 

  Khadeja Akter  

  (2014-3-60-073) 

 

 

 

 

	

	

	



ii 
 

	

Letter	of	Acceptance	
 

The Project entitled “ Analyzing and Verification of Web Service Composition” 
submitted by Maliha Tunzira [2013-3-60-010] and Khadeja Akter [2014-3-60-
073] to the Department of Computer Science and Engineering, East West 
University, Dhaka, Bangladesh in the semester of Summer 2019 is approved 
satisfactory in partial fulfillments for the award of the degree of Bachelor of 
Science in Computer Science and Engineering.  
 

 

 

 

 

Dr. Shamim Hasnat Ripon 

Professor, 

Department of Computer Science and Engineering  

East West University 

Dhaka, Bangladesh. 

 

 

 

 

Dr. Taskeed Jabid 

Associate Professor & Chairperson, 

Department of Computer Science and Engineering  

East West University 

Dhaka, Bangladesh. 

 

 

	



iii 
 

	

	

	

	

	

Abstract	

	
In the internet's distributed setting, a platform-independent software 
component is called Web Service. Many business institutions publish advanced 
features of their apps on the internet. A Web Service has only a confined 
feature.  It is therefore a crying need to integrate Web Services and organize 
them into an objective-oriented framework to promote company connections. 
This is both hard and sensitive to provide error handling for a transaction 
various participants in managing defects. We have created a Real Estate Web 
Service system in this venture. We modeled the FSP choreography of service 
and used the LTSA tool to visualize the transformations. We attempted to 
check the structure of the scheme using ownership procedures applicable in 
FSP before implementing for every model.	
 

 

 

 

 

 

 

 

 

 

 



iv 
 

 

 

 

 

	
	

Acknowledgement	
 
 

It is with enormous appreciation that we acknowledge the contribution of our 
supervisor, Dr.	Shamim	Hasnat	Ripon, Professor of Department of Computer 
Science and Engineering, East West University. This thesis would have stayed 
a dream without his adequate guidance, motivation and help. We find working 
with him to be an accomplishment. We are also indebted for their assistance 
and encouragement to our parents, other faculty members of the department 
and friends. Finally thanks to the Almighty, who gave us the willpower to 
effectively finish the thesis. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

 

 

	

	

Table	of	Contents	

Chapter	1     1

Introduction	 1

 1.1	 Introduction and Motivation 1

 1.2	 Objectives 2

 1.3	 Contribution 2

 1.4	 Outline 3

Chapter	2	   4

Background	 4

 2.1	 Web Service and Composition 4

 2.2	 Choreography 4

 2.3	 Modeling processes in FSP 5

 2.4	 Property Processes to Verify the System 11

Chapter	3  13

Real	Estate	Service	Composition	 13

 3.1	 Real Estate Web Service  13

 3.2	 Client  14

 3.3	 Website  14

 3.4	 Plot Data  15

 3.5	 Agent  16

 3.6	 Landlord  17

 3.7	 Bank  17

 3.8	 The system architectural structure  18

 3.9	 Sequence Diagram of system 19

Chapter	4	  20

Service	Composition	in	FSP 20

 4.1	 Code Representation  20

 4.2	 Modeling Single Process in FSP 20

 4.3	 Modeling Double Processes in FSP  25



vi 
 

 4.4	 Modeling Triple Processes in FSP 31

 4.5	 Modeling four Processes together in FSP  33

 4.6	 Modeling All Processes in FSP  35

	
	
	
Chapter	5		
Property	Process	for	Verification	 37

 5.1	 Verifying Client process 37

 5.2	 Verifying Website process 39

 5.3	 Verifying AGENT process 40

 5.4	 Verifying LANDLORD process 42

 5.5	 Verifying BANK process 43

Chapter	6	     44

Conclusion	  44

 6.1	 Summary 44

 6.2	 Future Work 44

Appendix	A   45

 A.1	 CLIENT Web Service 45

 A.2 WEBSITE Web Service 45

 A.3	 PLOTDATA Web Service 45

 A.4 Agent Web Service 45

 A.5	 LANLOD Web Service 45

 A.6 BANK Web Service 45

 A.7	 CLIENT and WEBSITE 46

  A.8 CLIENT and AGENT 46

 A.9	 WEBSITE and PLOTDATA 47

 A.10 CLIENT and LANDLORD 47

 A.11 CLIENT and BANK 48

 A.12 WEBSITE and AGENT 48

 A.13 CLIENT, WEBSITE and AGENT 49

 A.14 CLIENT, WEBSITE, AGENT and LANDLORD 50

 A.15 Real Estate Webservice 51

Appendix	B 	  53

 B.1	 CLIENT process 53



vii 
 

 B.2 WEBSITE process 53

 B.3	 AGENT process 53

 B.4 LANDLORD process 53

 B.5	 BANK process 53

References   54

	

	

List	of	Figures	
 

Figure	2.1:	Web	service	choreography	 5

Figure	2.2	:	LTSA	Representation	of	Clock	1	 6

Figure	2.3	:	LTSA	Representation	of	Choice	effect	 7

Figure	2.4	:	LTSA	Representation	of	Choice	effect	 7

Figure	2.5	:	LTSA	Representation	of	Condition	 8

Figure	2.6	:	LTSA	Representation	of	Guard	 9

Figure	2.7	:	LTSA	Representation	of	Parallel	process 9

Figure	2.8	:	LTSA	Representation	of	relabeling 11

Figure	2.9	:	LTSA	Representation	of	Property	verification 12

Figure	3.1	:	Architecture	view	of	Client	 14

Figure	3.2	:	Architecture	view	of	Website	 15

Figure	3.3	:	Architecture	view	of	Plot	Data	 15

Figure	3.4	:	Architecture	view	of	Agent	 16

Figure	3.5	:	Architecture	view	of	Landlord	 17

Figure	3.6	:	Architecture	view	of	Bank	 17

Figure3.7:	Architectural	View	of	Real	state	Webservice	 18

Figure	3.8	:	Sequence	diagram	of	overall	System	 19

Figure	4.1	:	LTSA	Representation	of	Client	Process	 21

Figure	4.2	:	LTSA	Representation	of		Website	Process	 22

Figure	4.3	:	LTSA	Representation	of	Plot	Data	process 22

Figure	4.4	:	LTSA	Representation	of		Agent	Process 23

Figure	4.5	:	LTSA	Representation	of		Landlord 24

Figure	4.6	:	LTSA	Representation	of		Bank	Process 24



viii 
 

Figure	4.7	LTSA	Representation	of		CW (	CLIENT	and	WEBSITE	)	

process	

25

Figure	4.8	LTSA	Representation	of		CA (	CLIENT	and	AGENT	)	process	 26

Figure	4.9		LTSA	Representation	of		WP (	WEBSITE	and	PLOTDATA	)	

process	

27

Figure	4.10		LTSA	Representation	of		CL	(	CLIENT	and	LANDLORD	)	

process	

28

Figure	4.11	LTSA	Representation	of		CB	(	CLIENT	and	BANK	)	process	 29

Figure	4.12	LTSA	Representation	of		WAG	(WEBSITE	and	AGENT)	

process	 30

Figure	4.13	LTSA	Representation	of	CWA	(CLIENT	,WEBSITE	and	

AGENT)	process	 32

Figure	4.14	LTSA	Representation	of	CWAL	(CLIENT	,WEBSITE	,	

AGENT	and	LANDLORD)	process	 34

Figure	4.15	LTSA	Representation	of	Real	State	Webservice 36

Figure	5.1:	LTSA	representation	of	safety	property	SAFE_B 37

Figure	5.2	LTSA	representation	of	safety	property	SAFE_A	 38

Figure	5.3	LTSA	representation	of	SAFE_CLIENT	process	 38

Figure	5.4	LTSA	representation	of	safety	property	SAFE_AG	 39

Figure	5.5	LTSA	representation	of	SAFE_WEB	Process	 39

Figure	5.6	LTSA	representation	of	safety	property	SAFE_C	 40

Figure	5.7	LTSA	representation	of	safety	property	SAFE_LA	 40

Figure	5.8	LTSA	representation	of	safety	property	SAFE_A2	 41

Figure	5.9	LTSA	representation	of	SAFE_AGENT	Process	 41

Figure	5.10	LTSA	representation	of	SAFE_LAN	process	 42

Figure	5.11	LTSA	representation	of	SAFE_LAND	process	 42

Figure	5.12	LTSA	representation	of	safety	property	SAFE_BA	 43

Figure	5.13	LTSA	representation	of	SAFE_Bank	process 43

 

 



1 | P a g e  
 

Chapter	1	
 

Introduction	
 

1.1	Introduction	and	Motivation	
	
We live in such era where consumers are online looking for information or 
purchase something they want. This buying behavior trend increased the 
importance of web services in businesses. Many business companies or 
enterprise publish their applications functionalities on the web using a web 
service format. A web service is a technology independent service that helps 
different applications to communication with each other. Web services are 
known as self-contained, modular units of application logic, which provide 
business functionality to other applications through an Internet connection.  
 
In this mechanical period, business applications like web service permit more 
prominent effectiveness and accessibility for business.  A web service alone 
has a constrained usefulness which may not be adequate to react the client’s 
solicitation. While a composition of a few web service can accomplish a 
particular objective. From a client’s point of view, the composition may be 
considered as a straightforward web service, despite the fact that its made out 
of a few web service. In a quintessence, the total is a coordinated effort of 
many web service providers. 
 
As models are simplified representations of real-world entities, we made 
model to better understand it. To focus on particular interesting aspects, 
visualize potential outcomes and create mechanisms to test and verify an 
approach. We need model checking to confirm accuracy properties, for 
example, the absence of deadlocks and similar critical states that can make the 
framework or the system crash. Each model ought to be confirmed before 
implementation. There are different languages to model a system and check it 
properly. BPEL, FSP, cCSP are the most usable language to construct a model a 
system with their notations. Among them FSP has the most expressive and 
ground-breaking way to deal with envision the system. To give atomicity to an 
exchange taking care of multiple partners where different accomplices are 
included are both troublesome and basic.  A solution to the problem is to 
provide such mechanism to control the actions that cannot be undone 
automatically.  



2 | P a g e  
 

 

1.2	Objectives	
 
 
The objectives of our project are as follows :  
 

 Analyzing the web service composition in respect to the composition 
mechanism choreography. 

 Modeling a composition using Finite State Process (FSP) notations and 
Labeled Transition System Analyzer (LTSA) tool. 

 Verifying the designed model as it is specified in the model specification. 
Ensuring that in a concurrent execution all synchronizing points executes 
properly and no deadlock and such critical states occur that violate the 
correctness properties.  
 
 
 
 

1.3	Contribution	
 
Our contribution in the project as follows : 
 
We have utilized Finite State Process (FSP) documentations to depict the 
model and LTSA tool to create the relating Labeled change outlines. We 
dissected the model and distinguished different segments of the web 
administration just as the piece among the administrations. Then implement 
the system according to their interactions.  
 
We added some safety properties to confirm synchronizations among 
procedures in a simultaneous execution and checked the accuracy properties, 
for example, the nonappearance of deadlocks and comparable basic expresses 
that can make framework pound. 

 

 

 

 
 

	
	



3 | P a g e  
 

1.4	Outline		
	

Chapter	1	 : Firstly we represent about our motivation to work, specify our 
objectives and then the contribution that we have made. 

Chapter	2	: Web service composition and a way to compose the web service 
(Choreography). Then a brief description is given about Finite State Process 
(FSP) which is used to specify our model and about LTSA tool to compile FSP 
notations.  

Chapter	 3	 : This chapter describes about Real Estate service composition 
including the contribution of each web services in the system. 

Chapter	4	: The coding representation of our service in FSP. 

Chapter	5	: Define some safety properties in order to verify our web service.  

Chapter	 6	 : At last, in this chapter we summarized our work and give a 
definition about our future plan.  

   

	
 

 

 

 

 

 

 

 

 

 
 

	

	



4 | P a g e  
 

Chapter	2		
	

Background	
	

2.1	Web	Service	and	Composition	
 

Web services are computing components that are autonomous and 
interacting. That solves particular duties ranging from easy demands to 
complicated business processes and communicating using SOAP standard 
XML messages. They are autonomous platform self-describing, self-contained, 
and can be released, situated, and accessed through conventional Internet 
protocols. 

Composition of Web service is a mixture of several current services to 
produce a composite value-added service. It aims to combine and coordinate a 
set of services to achieve functionality that can’t be achieved through current 
services. Service community attempts suppose that all services are based on 
an interface model. 

There are two methods for describing the sequence of stuff that make up the 
composite workflows: orchestration and choreography[1][2][3]. 

 

	

2.2	Choreography	
 

 

Service choreography is collaborative and enables every side engaged in the 
communication to define their role. In choreography, a worldwide view 
specifies the logic of message-based relationships between the members. 



5 | P a g e  
 

Figure 2.1: Web service choreography 

 

Choreography of Web services relates to a Web service's public protocol, 
defining the form and order of messages passed between such a Web service 
and its customers or associates. It reflects a worldwide overview of the 
measurable conduct of each service involved in communication, characterized 
by the public exchange of messages, communication rules, and arrangements 
between two or more nodes of business operations. Normally, it is connected 
with connections occurring between various Web services instead of a 
particular business mechanism executed by a single party. 

The normal Web Services Choreography Translation Language supports the 
choreography mechanism. As a coating to bridge the gap between current 
orchestration techniques, choreography is been suggested[1][4]. 

 

2.3		Modelling	processes	in	FSP	

 

FSP stands for Finite State Processes. Finite State Processes is a logarithmic 
documentation to portray procedure models. The constructed FSP can be 
utilized to demonstrate the careful progress of work process forms through a 
modeling tool such as Labeled Transition System Analyzer (LTSA), which 
gives gathering of FSP into a Labeled Transition System (LTS). These are 
depicted literally as Finite State Processes and showed and broke down by the 
Labeled Transition System Analyzer LTSA analysis Tool. This tool offers 
chance to test the model work processes before actualizing the model. LTS is 
the graphical structure and FSP is the algebraic structure[5][6]. 



6 | P a g e  
 

 
FSP consists of Action Prefix, Process definition, Choice, Indexed Processes 
and Actions, Guarded Actions, Properties, Constant and Range Declarations, 
Variable Declaration, Process Alphabets and so on. [verification 
compensation, EWU] 
 
A service may be a multi-process process or structure. A process is a 
continuous program implementation. It is designed as a finite state machine 
by implementing a series of atomic activities that traverses from state to state. 
Practically speaking, an action could be a message, a signal, or maybe a typical 
job implementation[5]. 
 
There are two types of Finite State Processes are two types; such as Primitive 
Processes and Composite Processes. 
 

Primitive	Processes	
 

Primitive processes are defined using action prefix, choice and recursion. Both 
action labels and local process names may be indexed which greatly increases 
the descriptive power of FSP. 

Action	Prefix	"‐>"	

Action prefix describes a process involving action a and then acting as 
outlined by P. More operationally, a transition between states is defined by 
the action prefix. The following recursive definition describes the process 
CLOCK which repeatedly engages in the action tick. 

 
 
CLOCK = (tick -> CLOCK). 

The LTS corresponding to the definition above is: 

 

Figure 2.2 : LTSA Representation of Clock 1	

 



7 | P a g e  
 

Choice	"|"	

Determine		

Choice defines a process that originally involves either a or b actions. 
Subsequent behavior is defined by P after the first action has been conducted 
if the first event was a, or by Q if the first event was b. The LTS corresponding 
to this phase has out of the original state two feasible movements a and b. The 
example describes the behavior of a dispensing machine which dispenses 
coffee if the black button is pressed and tea if the white button is pressed. 

DRINKS = (black -> coffee -> DRINKS | white -> tea -> 
DRINKS). 

  

 

Figure 2.3 : LTSA Representation of Choice effect 

Non‐determinism	
 

In not distinguishing between inner and external choices, FSP follows CCS 
rather than CSP. Consequently, non-deterministic choice is demonstrated 
merely by having the same action leading to two distinct successor behaviors 
as shown in the instance of throwing a coin.  

 
COIN = (toss -> heads -> COIN |toss -> tails -> COIN). 

 

Figure 2.4 : LTSA Representation of Choice effect 

 

	



8 | P a g e  
 

Conditional	

 

A conditional takes the form: if expr then local_process else local_process. 
FSP supports only integer expressions. A non-zero expression value causes 
the conditional to behave as the local process of the then	part; a zero value 
causes it to behave as the local process of the else part. The else part is 
optional, if omitted and expr evaluates to zero the conditional becomes the 
STOP process. 

 
Example:   LEVEL = (read[x:0..3] -> 
  if x>=2 then 
    (high -> LEVEL) 
  else 
    (low -> LEVEL)). 

 

Figure 2.5 : LTSA Representation of Condition 

Guards	

A guarded transition takes the form (when B a -> P) which means that 
the action a is eligible when the guard B is true, otherwise a cannot be chosen 
for execution. The following example uses guards to define a bounded 
semaphore: 

const Max = 4 
range Int = 0..Max 
 
BSEMA(Init=0) = BSEMA[Init], 
BSEMA[v:Int]  = (when (v<Max) up   -> BSEMA[v+1] 
         |when (v>0)   down -> BSEMA[v-1] 
                ). 



9 | P a g e  
 

Figure 2.6 : LTSA Representation of Guard 

	

Composite	Processes 

Composite processes are defined using parallel composition, relabeling and 
hiding.  

Parallel	Composition	"||"	

The parallel structure of P and Q procedures is expressed ( P || Q). It builds an 
LTS that enables the activities of the two procedures to intersect as much as 
possible. Actions occurring in both P and Q alphabets restrict interleaving as 
these activities must be carried out simultaneously by both procedures. These 
shared activities synchronize the two processes ' implementation. If the 
processes contain no shared actions then the composite state machine will 
describe all interleaving. In the following example, x is an action shared by the 
processes A and B. 

A = (a -> x -> A). 
B = (b -> x -> B). 
||SYS = (A || B). 

Figure 2.7 : LTSA Representation of Parallel process 

 



10 | P a g e  
 

Process	Labeling	
 

The garage system could be more elegantly expressed using process labelling 
as shown below: 
 
CAR   = (outside -> enter -> ingarage -> exit -> CAR). 
 
GARAGE(N=2) = (car[x:1..N].enter -> car[x].exit -> 
GARAGE). 
 
||SHARE     = (car[1]:CAR || car[2]:CAR || GARAGE). 

 
 
The construction car[1]:CAR prefixes all action labels within CAR with the 
label car[1]. Finally, we can generalise the description such that it describes a 
systems with N cars sharing the garage: 
 
||SHARE(N=3) = (car[1..N]:CAR || GARAGE(N)). 

The || operator is commutative (P||Q º Q||P). 
 
 

Relabeling	"/"	

Relabeling functions are applied to processes and the action label names are 
changed. Usually this is performed to guarantee that the right activities are 
synchronized by composed procedures. For both primitive and composite 
procedures, a relabeling feature can be implemented. In composition, 
however, it is usually used more. The overall form of the function of relabeling 
is / {newlabel_1/oldlabel_1,…. , newlabel_n / oldlabel_n}. The instance 
demonstrates the structure of two procedures of binary semaphore to 
produce a semaphore that can be increased twice (by up). The diagram 
demonstrates how the down action of the first SEMA method is linked to the 
up action of the next weekphore by relabeling both to mid. The alphabet of 
SEMA2 is {up,	down,	mid} and its LTS is depicted below:[6] 

 

 

 

 



11 | P a g e  
 

 

Figure 2.8 : LTSA Representation of relabeling 

	

Hiding	"\"	and	"@"	

Hiding removes action names from the alphabet of a process and thus makes 
these concealed actions "silent". By convention, these silent actions are 
labeled "tau". The general form of a hiding expression is /{set of labels to be 
hidden}. Sometimes it is more convenient to state the set of action labels, 
which are visible and hide all other labels. This is expressed by @{set of 
visible labels }. Hiding expressions can be applied to both primitive and 
composite processes but are generally used in defining composites. 

 

 

2.4		Property	Processes	to	Verify	the	System	
 

Safety	Properties	
 

LTSA specifies safety characteristics as deterministic primitive procedures 
that do not contain silent (tau) transitions (no hiding). The keyword property 
denotes security ownership processes. For the scheme with which it is 
comprised, a property method informally establishes a set of acceptable 
behaviors. A scheme S will fulfill a property P if S can only produce action 
sequences (traces) when restricted to the alphabet of P, are acceptable to P. 
For example, the following property specifies that only behavior in which 
knock occurs before enter is acceptable. 

property POLITE = (knock->enter->POLITE). 

 

 



12 | P a g e  
 

The systems specified below would generate property violations: 

 

HESITANT = (knock->knock->enter->HESITANT). 
 IMPATIENT = (enter -> IMPATIENT) 

||SysA = (HESITANT || POLITE). 
||SysB = (IMPATIENT || POLITE). 

 

Property procedures do not limit the operation of the devices with which they 
are comprised. They are collected into LTS "picture," which accepts all 
possible alphabet interleaving. Violating action sequences, however, leads to a 
state of mistake (represented as -1) as shown in POLITE's LTS [5]. 

 

Figure 2.9 : LTSA Representation of Property verification 

 
 
	

	
	
	
	
	
	
	
	
	



13 | P a g e  
 

Chapter	3	
 

Real	Estate	Service	Composition	
	

3.1		Real	Estate	Web	Service	
 

An online version of the real estate sector, web real estate is the notion of 
selling or renting residential properties and buying or renting a property for 
customers. Web real estate is often run by landlords themselves.  There are 
several special cases, though, in which there would be an online real estate 
agent, still dealing through the web and often saying a flat fee rather than a 
commission based on the percentage of overall sales. Web real estate emerged 
around 1999 when sophisticated technology and facts show that the landlords 
themselves sold more than 1 million homes in America in 2000. Zillow, Trulia, 
Yahoo! Real Estate, Redfin and Realtor.com are some of the top web real 
estate sites[7]. 

 

The method of web real estate idea generally starts with landlords posting 
their properties on online sites with their quoted cost. The more website 
owners list their properties, the more data is disseminated.  Search engines 
are generally their first pit-stop as clients searching for a piece of property. 
Client searches at the website. Once a prospective client contacts the landlord, 
if not indicated, they would go through the estate information–sizing, 
facilities, situation, and pricing. Agent can contact with landlord and bank. 
After which, an appointment for inspecting the property would normally be 
planned and in some cases, prospective clients may ask that certain facilities 
or sections of the estate be refurnished. If terms of the contract are completed 
between both sides, the client would normally deal for the best deal if the 
landlord could ask for a payment. Client can connect with bank through the 
website.  Lastly, both sides will agree on a complete payment date, signing on 
formal payment, and passing on keys to the estate. 

 

	
	
	

	



14 | P a g e  
 

3.2	Client		

 

In our proposed system client can search at website. Then he/she selects 
property according to his/her preference. Then he/ she has to select agent 
from the website list. After agent contacts with landlord, client confirms the 
deal. In mean time agent communicates with bank and reply to client. Client 
finally communicates with bank for loan. When everything is sorted out about 
deal, client gives payment and takes the property. 

Figure 3.1 : Architecture view of Client 

	

	
3.3		Website		
 

Website tool is the medium of communication between client and other 
processes. When client search for property it connects with property 
database. And convey the found result to client. Then it also show the agent 
list to client when he/she selects any property. After assigning the agent it 
stops communicate before any need. 

 



15 | P a g e  
 

 

Figure 3.2 : Architecture view of Website 

 

	
3.4	Plot	Data	
 

Plot Data is the database of this website. Here all the property information 
and  landlord contacts can be found. When client searches for property, 
website asks the preferred property to database. It shows the necessary 
information through website. 

Figure 3.3 : Architecture view of Plot Data 

 
 

	



16 | P a g e  
 

3.5	Agent		

	

Here Agent is the broker of the whole system. It first contacted with client 
through the website. Website checks the availability of agent.  When it 
confirms,  website assigns fitted agent for the client. Agent contacts with client 
and then with landlord. When landlord gives consent, agent gives this 
message to client. It also gives plot availability confirmation to client. Client 
finally confirm the deal. 

 

 

Figure 3.4 : Architecture view of Agent 

 

	

	

	

	

	

	

	



17 | P a g e  
 

3.6	Landlord	

 

Here landlord is the owner of the properties. They contact through the agent. 
When agent sends request for plot they replies through. Then they can contact 
with client with their own and make the deal. Finally they receive payment 
and deliver the property to client. 

 

 

Figure 3.5 : Architecture view of Landlord 

3.7	Bank	 

 

Bank is in here for the deposit and payment purpose.  When Client asks for 
loan, it verifies for affordability of client and gives reply.  

 

Figure 3.6 : Architecture view of Bank 

	
	
	
	



18 | P a g e  
 

3.8	The	system	architectural	structure 

 

Figure3.7: Architectural View of Real state Webservice 

  



19 | P a g e  
 

3.9	Sequence	Diagram	of	Overall	System 

 

Figure 3.8 : Sequence diagram of overall System 

	

	

  



20 | P a g e  
 

Chapter	4	 

 

Service	Composition	in	FSP	

 

4.1		Code	Representation		

	

In our system we have six major processes which have their own safety 
property to ensure good composition. In FSP we modelled the system like that 
, Client will search at Website then it gives data through Plotdata. Website will 
display and will assign Agent with its consent. Agent will contact with 
Landlord. Landlord will give confirmation to Agent, it will convey this to 
client. Then Landlord will ready the property and give confirmation through 
Agent. Client will apply for loan to Bank. Bank will verify and reply to Client. 
Then Client can pay to Landlord and take property from it. [5] 

 

 
 
 

4.2	Modelling	Single	Process	in	FSP	

 

CLIENT		

Client process consists with sequence of action and choice. The process starts 
with search , then receive display action which is c.display . Then Client 
select plot, get agent list, select agent and assigned Agent. The following 
actions are c.sel_prp,  c.aglist,  c.sel_ag. When Client will have 
confirmation which is c.ay_ack, it will apply for loan which is 
c.apply_loan. Then Client will get reply, pay to Landlord and take delivery 
which are c.yb_ack, c.paymeny, c.deliver. If Client get negative 
reply then it will get c.nb_ack, c.an_ack.  

 



21 | P a g e  
 

CLIENT = ( c.search->c.display->c.sel_prp->c.aglist-> 
 c.sel_ag -> c.assigned -> c.plot_ready -> 
(c.ay_ack -> c.apply_loan ->(c.yb_ack -> c.paymeny -
>c.deliver -> CLIENT |c.nb_ack ->CLIENT) | c.an_ack 
-> CLIENT)). 
 
 
 

Figure 4.1 : LTSA Representation of Client Process 
 

 
 
 
WEBSITE	
	
	
Website also consists with sequence of action and choice. First it will search 
action from CLIENT, send query to PLOTDATA and receive reply, display to 
Client again; which are w.search, w.send_qry, w.reply, 

w.display. When Client select property it will show agentlist and verify 
agent availability; which are w.sel_prop, w.aglist, w.sel_ag,  

w.contact_ag. If Agent is not available it gets negative ack which is 
w.an_ack. 

 
 
 
 



22 | P a g e  
 

WEBSITE = ( w.search -> w.send_qry -> w.reply -> 
w.display -> w.sel_prop -> w.aglist -> w.sel_ag -> 
w.contact_ag -> (w.ay_ack -> w.assigned -> 
w.prop_info -> WEBSITE | w.an_ack -> WEBSITE)). 

 
 

 
Figure 4.2 : LTSA Representation of  Website Process 

	
	
PLOTDATA 
	
	
Plotdata has not complicated communication with processes. It only get query 
which is p.send_qry  and send appropriate property list which is 
p.reply. 
 
PLOTDATA = ( p.send_qry -> p.reply -> PLOTDATA). 

 
 

 
Figure 4.3 : LTSA Representation of Plot Data process 

 
	



23 | P a g e  
 

AGENT	
 
 
Agent has lot of actions and choices. When Website contacts with it, it gives 
availability confirmation then start contacts with Landlord. Agent gets reply 
from Landlord which are l.y_ack, a.plot_ready . Sometimes it can get negative 
reply also which are c.n_ack, l.n_ack, a.n_ack. These all are defined by choices. 
 
 
AGENT =( a.contact ->( a.y_ack->a.prop_info -> ask_qry 
-> (l.y_ack -> a.plot_ready ->( c.y_ack-> AGENT | 
c.n_ack -> AGENT)| l.n_ack ->AGENT) | a.n_ack -> 
AGENT)). 
 
 
 

 
Figure 4.4 : LTSA Representation of  Agent Process 

 
 
	
	
	
	
	
	
	
	



24 | P a g e  
 

LANDLORD	
	
Landlord basically confirms deal and confirms the availability of property. It 
first contacts with Agent which is l.ask_qry . Then following actions like 
give confirmation for the plot  which are l.y_ack , rcv_payment, 
deliver. It can gives negative reply too which is l.n_ack.  
 
LANDLORD = ( l.ask_qry -> (l.y_ack -> rcv_payment -> 
deliver ->  LANDLORD | l.n_ack -> LANDLORD)). 

Figure 4.5 : LTSA Representation of  Landlord 
 
BANK	
 
Bank actions are very simple. It gets request from Client rcv_loan.req  
then reply with ack. Both positive and negative reply can be get by the Client 
which are b.pack, b.nack.  
 
BANK = (rcv_loan.req -> (b.pack-> BANK|b.nack ->BANK)). 

 
Figure 4.6 : LTSA Representation of  Bank Process 

	
	



25 | P a g e  
 

4.3	Modeling	Double	Processes	in	FSP 
 

CLIENT	and	WEBSITE	

CLIENT = ( c.search-> c.display -> c.sel_prp -> 
c.aglist -> c.sel_ag -> contact -> (agpack -
>c.assigned -> webprop -> al.qry -> (lq.pack -> 
c.plot_ready -> (c.ay_ack -> c.apply_loan -> (c.yb_ack 
-> c.paymeny ->c.deliver -> CLIENT |c.nb_ack ->CLIENT) 
| c.an_ack -> CLIENT)|lq.nack -> CLIENT)| agnack -
>CLIENT)). 
 
 
WEBSITE = ( w.search -> w.send_qry -> w.reply -> 
w.display -> w.sel_prop -> w.aglist -> w.sel_ag -> 
w.contact_ag -> (w.ay_ack -> w.assigned -> 
w.prop_info -> la.qry -> WEBSITE | w.an_ack -> 
WEBSITE)). 
 

 
||CW = ( CLIENT || WEBSITE ) /  

{ c.search/w.search , c.display/w.display , 
c.sel_prp/w.sel_prop , c.aglist/w.aglist , 
c.sel_ag/w.sel_ag , contact/w.contact_ag , 

agpack/w.ay_ack , agnack/w.an_ack , 
c.assigned/w.assigned , webprop/w.prop_info }. 

 

Figure 4.7 LTSA Representation of  CW ( CLIENT and WEBSITE ) process 



26 | P a g e  
 

CLIENT	and	AGENT 

 
 
CLIENT = ( c.search-> c.display -> c.sel_prp -> 
c.aglist -> c.sel_ag -> contact -> (agpack -> 
c.assigned -> webprop -> al.qry -> (lq.pack -> 
c.plot_ready -> (c.ay_ack->c.apply_loan ->(c.yb_ack -> 
c.paymeny ->c.deliver -> CLIENT |c.nb_ack-> CLIENT) | 
c.an_ack -> CLIENT)|lq.nack -> CLIENT)| agnack ->
 CLIENT)). 
 
AGENT = ( a.contact -> ( a.y_ack -> assigned -> 
a.prop_info -> ask_qry -> (l.ay_ack -> a.plot_ready ->( 
c.y_ack-> loan -> (apploan -> pay -> deli -> AGENT | 
rejloan ->AGENT) | c.n_ack -> AGENT)| l.an_ack -
>AGENT) | a.n_ack -> AGENT)). 
 
||CA = ( CLIENT || AGENT ) /  

{ agpack/a.y_ack, agnack/a.n_ack 
,c.assigned/assigned, webprop/a.prop_info , 

al.qry/ask_qry , lq.pack/l.ay_ack, lq.nack/l.an_ack 
,c.plot_ready/a.plot_ready, c.ay_ack/c.y_ack , 
c.an_ack/c.n_ack, c.plot_ready/a.plot_ready , 

c.apply_loan/loan, c.yb_ack/apploan, c.nb_ack/rejloan ,  
c.payment/pay , c.deliver/deli}. 

 

Figure 4.8 LTSA Representation of  CA ( CLIENT and AGENT ) process 
 
	



27 | P a g e  
 

WEBSITE	and	PLOTDATA	
 
WEBSITE = ( w.search -> w.send_qry -> w.reply -> 
w.display -> w.sel_prop -> w.aglist -> w.sel_ag -> 
w.contact_ag -> (w.ay_ack -> w.assigned -> 
w.prop_info -> la.qry -> WEBSITE | w.an_ack -> 
WEBSITE)). 
 
PLOTDATA = ( p.send_qry -> p.reply -> PLOTDATA). 
 
||WP = ( WEBSITE || PLOTDATA ) / {w.send_qry/p.send_qry
 ,w.reply/p.reply }. 

 

Figure 4.9  LTSA Representation of  WP ( WEBSITE and PLOTDATA ) process 
	
	
	
CLIENT	and	LANDLORD 
 
CLIENT = ( c.search-> c.display -> c.sel_prp -> 
c.aglist -> c.sel_ag -> contact -> (agpack -> 
c.assigned -> webprop -> al.qry -> (lq.pack -> 
c.plot_ready -> (c.ay_ack -> c.apply_loan -> (c.yb_ack 
-> c.paymeny ->c.deliver -> CLIENT |c.nb_ack ->CLIENT) 
| c.an_ack -> CLIENT)|lq.nack -> CLIENT)| agnack -
>CLIENT)). 
 
 
LANDLORD = ( l.ask_qry -> (l.y_ack -> ready_plot -> 
(rd_pack -> applyloan -> (b.confim -> rcv_payment -> 
deliver -> LANDLORD|b.reject ->LANDLORD)| rd_nack -
> LANDLORD)| l.n_ack -> LANDLORD)). 



28 | P a g e  
 

 
||CL = ( CLIENT ||LANDLORD ) /  
{al.qry/l.ask_qry , lq.pack/l.y_ack, lq.nack/l.n_ack , 

c.plot_ready/ready_plot , c.ay_ack/rd_pack ,  
c.an_ack/rd_nack , c.apply_loan/applyloa, 
c.yb_ack/b.confirm ,c.nb_ack/b.reject , 

c.payment/rcv_payment ,  
c.deliver/deliver}. 

 

Figure 4.10 LTSA Representation of  CL ( CLIENT and LANDLORD ) process 
 
 
 
 
CLIENT	and	BANK	
	
 
CLIENT = ( c.search-> c.display -> c.sel_prp -> 
c.aglist -> c.sel_ag -> contact -> (agpack -> 
c.assigned -> webprop -> al.qry -> (lq.pack -> 
c.plot_ready -> (c.ay_ack -> c.apply_loan -> (c.yb_ack 
-> c.paymeny ->c.deliver -> CLIENT |c.nb_ack ->CLIENT) 
| c.an_ack -> CLIENT)|lq.nack -> CLIENT)| agnack -
>CLIENT)). 
 
 
 



29 | P a g e  
 

BANK = (rcv_loan.req -> (b.pack ->pays -> deliv -> 
BANK|b.nack ->BANK)). 
 
 
||CB = ( CLIENT || BANK ) /  

{c.apply_loan/rcv_loan.req , c.yb_ack/b.pack ,  
c.nb_ack/b.nack , c.payment/pays  , c.deliver/deliv }. 

 

 
Figure 4.11 LTSA Representation of  CB ( CLIENT and BANK ) process 

 
 
 
 

WEBSITE	and	AGENT	
 
 
WEBSITE = ( w.search -> w.send_qry -> w.reply -> 
w.display -> w.sel_prop -> w.aglist -> w.sel_ag -> 
w.contact_ag -> (w.ay_ack -> w.assigned -> 
w.prop_info -> WEBSITE | w.an_ack -> WEBSITE)). 
 
 
 
 



30 | P a g e  
 

AGENT = ( a.contact -> ( a.y_ack ->assign -> 
a.prop_info -> ask_qry -> (l.y_ack -> a.plot_ready -
>( c.y_ack-> AGENT | c.n_ack -> AGENT)| l.n_ack -
>AGENT) | a.n_ack -> AGENT)). 
 
 
 
||WAG = (WEBSITE || AGENT )/  

{w.contact_ag/a.contact , w.ay_ack/a.y_ack ,  
w.assigned/assign , w.prop_info/a.prop_info ,  

w.an_ack/a.n_ack }. 

 

 
 

 
 

Figure 4.12 LTSA Representation of  WAG (WEBSITE and AGENT) process 
 

 

	
	



31 | P a g e  
 

4.4	Modeling	Triple	Processes	in	FSP	

 

CLIENT,	WEBSITE	and	AGENT	
	
CLIENT = ( c.search-> c.display -> c.sel_prp -> 
c.aglist -> c.sel_ag -> contact -> (agpack -> 
c.assigned -> webprop -> al.qry -> (lq.pack -> 
c.plot_ready -> (c.ay_ack -> c.apply_loan -> (c.yb_ack 
-> c.paymeny ->c.deliver -> CLIENT |c.nb_ack -
>CLIENT) | c.an_ack -> CLIENT)|lq.nack -> CLIENT)|
 agnack ->CLIENT)). 
 
WEBSITE = ( w.search -> w.send_qry -> w.reply -> 
w.display -> w.sel_prop -> w.aglist -> w.sel_ag -> 
w.contact_ag -> (w.ay_ack -> w.assigned -> 
w.prop_info -> la.qry -> WEBSITE | w.an_ack -> 
WEBSITE)). 
 
AGENT = ( a.contact -> ( a.y_ack -> assigned -> 
a.prop_info -> ask_qry -> (l.ay_ack -> a.plot_ready ->( 
c.y_ack-> loan -> (apploan -> pay -> deli -> AGENT | 
rejloan -> AGENT)  
 | c.n_ack -> AGENT)| l.an_ack ->AGENT) | a.n_ack -
>AGENT)). 
 
||CWA = ( CLIENT || WEBSITE ||AGENT) /  

{ c.search/w.search , c.display/w.display ,  
c.sel_prp/w.sel_prop , c.aglist/w.aglist ,  
c.sel_ag/w.sel_ag , contact/w.contact_ag , 
w.contact_ag/a.contact , agpack/w.ay_ack ,  

agnack/w.an_ack , agpack/a.y_ack ,  
agnack/a.n_ack , c.assigned/w.assigned ,  

c.assigned/assigned , webprop/w.prop_info 
,w.prop_info/a.prop_info , al.qry/ask_qry ,  

lq.pack/l.ay_ack , lq.nack/l.an_ack ,  
c.plot_ready/a.plot_ready , c.ay_ack/c.y_ack ,  

c.an_ack/c.n_ack , al.qry/l.ask_qry ,  
lq.pack/l.y_ack, lq.nack/l.n_ack ,  

c.payment/rcv_payment, c.plot_ready/a.plot_ready , 
a.plot_ready/ready_plot , c.ay_ack/rd_pack ,  



32 | P a g e  
 

c.an_ack/rd_nack , c.apply_loan/applyloan , 
c.yb_ack/b.confirm ,c.nb_ack/b.reject , 

c.apply_loan/loan , c.yb_ack/apploan,  
c.nb_ack/rejloan , c.payment/pay , c.deliver/deliver , 

c.deliver/deli }. 

Figure 4.13 LTSA Representation of CWA (CLIENT ,WEBSITE and AGENT) 
process 

 
 
 

	
	
	
	
	

	



33 | P a g e  
 

4.5	Modelling	four	Processes	together	in	FSP	

 

CLIENT,	WEBSITE,	AGENT	and	LANDLORD	

	

CLIENT = ( c.search-> c.display -> c.sel_prp -> 
c.aglist c.sel_ag -> contact -> (agpack -> c.assigned 
-> webprop -> al.qry -> (lq.pack -> c.plot_ready -> 
(c.ay_ack -> c.apply_loan ->(c.yb_ack -> c.paymeny -
>c.deliver -> CLIENT |c.nb_ack ->CLIENT) | c.an_ack 
-> CLIENT)|lq.nack -> CLIENT)| agnack ->CLIENT)). 

WEBSITE = ( w.search -> w.send_qry -> w.reply -> 
w.display -> w.sel_prop -> w.aglist -> w.sel_ag -> 
w.contact_ag -> (w.ay_ack -> w.assigned -> 
w.prop_info -> la.qry -> WEBSITE | w.an_ack -> 
WEBSITE)). 

 

AGENT = ( a.contact -> ( a.y_ack -> assigned -> 
a.prop_info -> ask_qry -> (l.ay_ack -> a.plot_ready ->( 
c.y_ack-> loan -> (apploan -> pay -> deli -> AGENT | 
rejloan -> AGENT) | c.n_ack -> AGENT)| l.an_ack -
>AGENT) | a.n_ack ->AGENT)). 

 

LANDLORD = ( l.ask_qry -> (l.y_ack -> ready_plot -> 
(rd_pack -> applyloan -> (b.confim -> rcv_payment -> 
deliver -> LANDLORD|b.reject ->LANDLORD)| rd_nack -
> LANDLORD) | l.n_ack -> LANDLORD)). 

 
||CWAL = ( CLIENT || WEBSITE ||AGENT || LANDLORD ) /  

{ c.search/w.search , c.display/w.display ,  
c.sel_prp/w.sel_prop , c.aglist/w.aglist ,  
c.sel_ag/w.sel_ag , contact/w.contact_ag , 
w.contact_ag/a.contact , agpack/w.ay_ack ,  

agnack/w.an_ack , agpack/a.y_ack , agnack/a.n_ack , 
c.assigned/w.assigned , c.assigned/assigned , 
webprop/w.prop_info ,w.prop_info/a.prop_info ,  

al.qry/ask_qry , lq.pack/l.ay_ack ,  
lq.nack/l.an_ack , c.plot_ready/a.plot_ready ,  



34 | P a g e  
 

c.ay_ack/c.y_ack , c.an_ack/c.n_ack , al.qry/l.ask_qry 
, lq.pack/l.y_ack, lq.nack/l.n_ack , 

c.payment/rcv_payment, c.plot_ready/a.plot_ready , 
a.plot_ready/ready_plot , c.ay_ack/rd_pack , 

c.an_ack/rd_nack ,  
c.apply_loan/applyloan , c.yb_ack/b.confirm , 

c.nb_ack/b.reject , c.apply_loan/loan ,  
c.yb_ack/apploan, c.nb_ack/rejloan ,  

c.payment/pay , c.deliver/deliver , c.deliver/deli }. 
 

Figure 4.14 LTSA Representation of CWAL (CLIENT ,WEBSITE , AGENT and 
LANDLORD) process 

 
 
 

	
	
	
	

	



35 | P a g e  
 

4.6	Modelling	All	Processes	in	FSP	

 
CLIENT = ( c.search-> c.display -> c.sel_prp -> 
c.aglist -> c.sel_ag -> contact -> (agpack -> 
c.assigned -> webprop -> al.qry -> (lq.pack -> 
c.plot_ready -> (c.ay_ack -> c.apply_loan ->(c.yb_ack 
-> c.paymeny ->c.deliver -> CLIENT |c.nb_ack ->CLIENT) 
| c.an_ack -> CLIENT)|lq.nack -> CLIENT)| agnack -
>CLIENT)). 
 
 
WEBSITE = ( w.search -> w.send_qry -> w.reply -> 
w.display -> w.sel_prop -> w.aglist -> w.sel_ag -> 
w.contact_ag -> (w.ay_ack -> w.assigned -> 
w.prop_info -> la.qry -> WEBSITE | w.an_ack -> 
WEBSITE)). 
 
PLOTDATA = ( p.send_qry -> p.reply -> PLOTDATA). 
AGENT = ( a.contact -> ( a.y_ack -> assigned -> 
a.prop_info -> ask_qry -> (l.ay_ack -> a.plot_ready ->( 
c.y_ack-> loan -> (apploan -> pay -> deli -> AGENT | 
rejloan -> AGENT) | c.n_ack -> AGENT)| l.an_ack -
>AGENT) | a.n_ack -> AGENT)). 
 
 
LANDLORD = ( l.ask_qry -> (l.y_ack -> ready_plot -> 
(rd_pack -> applyloan -> (b.confim -> rcv_payment -> 
deliver -> LANDLORD|b.reject ->LANDLORD)| rd_nack -
> LANDLORD)| l.n_ack -> LANDLORD)). 
 
BANK = (rcv_loan.req -> (b.pack ->pays -> deliv -> 
BANK|b.nack-> BANK)). 
 
 
||CWALBP = ( CLIENT || WEBSITE || PLOTDATA ||AGENT || 
LANDLORD || BANK ) /  

{ c.search/w.search , c.display/w.display ,  
c.sel_prp/w.sel_prop , c.aglist/w.aglist ,  
c.sel_ag/w.sel_ag , contact/w.contact_ag , 
w.contact_ag/a.contact , agpack/w.ay_ack ,  

agnack/w.an_ack , agpack/a.y_ack ,  
agnack/a.n_ack , c.assigned/w.assigned ,  



36 | P a g e  
 

c.assigned/assigned , webprop/w.prop_info 
,w.prop_info/a.prop_info , al.qry/ask_qry ,  

lq.pack/l.ay_ack , lq.nack/l.an_ack ,  
c.plot_ready/a.plot_ready , c.ay_ack/c.y_ack ,  

c.an_ack/c.n_ack ,al.qry/l.ask_qry ,  
lq.pack/l.y_ack, lq.nack/l.n_ack ,  

c.payment/rcv_payment, c.plot_ready/a.plot_ready , 
a.plot_ready/ready_plot , c.ay_ack/rd_pack , 
 c.an_ack/rd_nack , c.apply_loan/applyloan ,  

c.yb_ack/b.confirm ,c.nb_ack/b.reject ,  
c.apply_loan/loan , c.yb_ack/apploan,  

c.nb_ack/rejloan , c.payment/pay ,  
c.deliver/deliver , c.deliver/deli ,  

c.apply_loan/rcv_loan.req ,  
c.yb_ack/b.pack , c.nb_ack/b.nack ,  
c.payment/pays  , c.deliver/deliv ,  

w.send_qry/p.send_qry ,w.reply/p.reply }. 

 

Figure 4.15 LTSA Representation of Real Estate Web Service. 



37 | P a g e  
 

Chapter	5	 
 

Property	process	for	verification		
 

A property is a quality of a program that is valid for each conceivable 
execution of that program. Normally there are two kinds of properties such as 
safety and liveness. A safety property states that nothing terrible occurs 
during execution. A liveness property states that something good occurs in 
execution such as execution of a program in a good state. If a safety property 
is composed in parallel with a  process and no trace violation is generated 
after the composition we can share that the safety property verifies that 
process. If any trace violation occurs we can say that the safety property could 
not verify the process.[ report book ] 
 

	

5.1	Verifying	Client	process	

 

property SAFE_B = ( c.nb_ack -> cancel_order -> 
SAFE_B). 

 
Figure 5.1: LTSA representation of safety property SAFE_B 

 
 
 



38 | P a g e  
 

The property process SAFE_B ensures that when  a negative 
acknowledgement is received from client it actually synchronizes with the 
CLIENT process. The property is described in two actions c.nb_ack which is 
a negative acknowledgement from CLIENT process , which leads to 
cancel_order .  
 
property SAFE_A = ( c.an_ack ->cancel_rcv_qt -> 
SAFE_A). 

Figure 5.2 LTSA representation of safety property SAFE_A  

As like as SAFE_B property process , this property also has two actions , 
ensuring that when a negative acknowledgement c.an_ack is thrown from 
CLIENT and cancel_rcv_qt is the next action. 
When the property processes SAFE_B and SAFE_A  is composed with 
CLIENT in SAFE_CLIENT, the actions of our property processes found in a 
sequential manner and does not show any trace violation in the LTS, we can 
say that there are no problem and they have been synchronized with each 
other successfully and satisfied the condition of our property process, 
otherwise not. 
 
||SAFE_CLIENT = ( CLIENT || SAFE_B || SAFE_A ). 

Figure 5.3 LTSA representation of SAFE_CLIENT process 



39 | P a g e  
 

5.2	Verifying	Website	process 

	

property SAFE_AG = (w.an_ack -> cancel_agent -> 

SAFE_AG). 

Figure 5.4 LTSA representation of safety property SAFE_AG 

The property process SAFE_AG is described by two actions that shows when 
w.an_ack which is a negative acknowledgement stating that no agent is 
available something like that , is thrown from website the next step would be 
to cancel the agent stating cancel_agent. When the property process 
SAFE_AG  is composed with WEBSITE in SAFE_WEB, the actions of our 
property processes found in a sequential manner and does not show any trace 
violation in the LTS, we can say that there are no problem and they have been 
synchronized with each other successfully and satisfied the condition of our 
property process, otherwise not. 
 

||SAFE_WEB = ( WEBSITE || SAFE_AG ). 

Figure 5.5 LTSA representation of SAFE_WEB Process 

	



40 | P a g e  
 

5.3	Verifying	AGENT	process	

	

property SAFE_C = (c.n_ack -> cancel_order -> SAFE_C). 

Figure 5.6 LTSA representation of safety property SAFE_C 

 

property SAFE_LA = (l.n_ack -> not_available -> 
SAFE_LA). 

 

 

Figure 5.7 LTSA representation of safety property SAFE_LA 

 



41 | P a g e  
 

property SAFE_A2 = (a.n_ack -> cancel_ag -> SAFE_A2). 

Figure 5.8 LTSA representation of safety property SAFE_A2 

 

When the property processes SAFE_C, SAFE_LA and SAFE_A2 is 
composed with AGENT in SAFE_AGENT, the actions of our property processes 
found in a sequential manner and does not show any trace violation in the 
LTS, we can say that there are no problem and they have been synchronized 
with each other successfully and satisfied the condition of our property 
process, otherwise not. 

||SAFE_AGENT = ( AGENT ||SAFE_C || SAFE_LA || SAFE_A2). 

Figure 5.9 LTSA representation of SAFE_AGENT Process 

 



42 | P a g e  
 

5.4	Verifying	LANDLORD	process	

	

property SAFE_LAN = (l.n_ack -> not_available -> 
SAFE_LAN). 

Figure 5.10 LTSA representation of safety property SAFE_LAN 

 

When the property processes SAFE_LAN is composed with LANDLORD in 
SAFE_LAND, the actions of our property processes found in a sequential 
manner and does not show any trace violation in the LTS, we can say that 
there are no problem and they have been synchronized with each other 
successfully and satisfied the condition of our property process, otherwise 
not. 

||SAFE_LAND = ( LANDLORD || SAFE_LAN ). 

Figure 5.11 LTSA representation of SAFE_LAND process 



43 | P a g e  
 

5.5	Verifying	BANK	process	

 

property SAFE_BA = (b.nack -> cancel_order -> SAFE_BA). 

Figure 5.12 LTSA representation of safety property SAFE_BA 

 

When the property processes SAFE_BA  is composed with BANK in 
SAFE_Bank, the actions of our property processes found in a sequential 
manner and does not show any trace violation in the LTS, we can say that 
there are no problem and they have been synchronized with each other 
successfully and satisfied the condition of our property process, otherwise 
not. 

||SAFE_Bank = ( BANK|| SAFE_BA). 

Figure 5.13 LTSA representation of SAFE_Bank process 

	



44 | P a g e  
 

Chapter	6		

Conclusion		

 

6.1	Summary		

	

We have analyzed about Web Service and its Composition. We have modeled 
the Real Estate Web Service by composing several web services to create a 
composite web service in a choreographic manner. From our proposed model 
firstly we analyzed the connections between the processes. We have used FSP 
notations to model and verify our desired system. We modeled every process 
individually and two or more processes together with FSP notations. In order 
to verification we have verified safety property. We have verified the 
processes with negative property.   

 

 

6.2	Future	Work	

 

Our future plan is to add some other property processes in the system and 
observing the impacts on our verification mechanism. We also want to model 
and verify service orchestration among the processes. We planned to include 
a recommendation system with this web service composition system. We will 
work on how we can get the best individual process comparing to other 
processes from different places with recommendation system.  

 

 

	

	

	



45 | P a g e  
 

Appendix	A	

 

A.1	CLIENT	Web	Service	
 

CLIENT = ( c.search->c.display->c.sel_prp->c.aglist-> 
 c.sel_ag -> c.assigned -> c.plot_ready -> 
(c.ay_ack -> c.apply_loan ->(c.yb_ack -> c.paymeny -
>c.deliver -> CLIENT |c.nb_ack ->CLIENT) | c.an_ack 
-> CLIENT)). 

 

A.2	WEBSITE	Web	Service	
 

WEBSITE = ( w.search -> w.send_qry -> w.reply -> 
w.display -> w.sel_prop -> w.aglist -> w.sel_ag -> 
w.contact_ag -> (w.ay_ack -> w.assigned -> 
w.prop_info -> WEBSITE | w.an_ack -> WEBSITE)). 

 

A.3	PLOTDATA	Web	Service	
 
PLOTDATA = ( p.send_qry -> p.reply -> PLOTDATA). 

 

A.4	Agent	Web	Service	
	
AGENT =( a.contact ->( a.y_ack->a.prop_info -> ask_qry 
-> (l.y_ack -> a.plot_ready ->( c.y_ack-> AGENT | 
c.n_ack -> AGENT)| l.n_ack ->AGENT) | a.n_ack -> 
AGENT)). 

 

A.5	LANLORD	Web	Service	
	
LANDLORD = ( l.ask_qry -> (l.y_ack -> rcv_payment -> 
deliver ->  LANDLORD | l.n_ack -> LANDLORD)) 

	
A.6	BANK	Web	Service	
	
BANK = (rcv_loan.req -> (b.pack-> BANK|b.nack ->BANK)). 

 
 

	



46 | P a g e  
 

A.7	CLIENT	and	WEBSITE	

CLIENT = ( c.search-> c.display -> c.sel_prp -> 
c.aglist -> c.sel_ag -> contact -> (agpack -
>c.assigned -> webprop -> al.qry -> (lq.pack -> 
c.plot_ready -> (c.ay_ack -> c.apply_loan -> (c.yb_ack 
-> c.paymeny ->c.deliver -> CLIENT |c.nb_ack -
>CLIENT) | c.an_ack -> CLIENT)|lq.nack -> CLIENT)|
 agnack ->CLIENT)). 
 
 
WEBSITE = ( w.search -> w.send_qry -> w.reply -> 
w.display -> w.sel_prop -> w.aglist -> w.sel_ag -> 
w.contact_ag -> (w.ay_ack -> w.assigned -> 
w.prop_info -> la.qry -> WEBSITE | w.an_ack -> 
WEBSITE)). 
 

 
||CW = ( CLIENT || WEBSITE ) /  

{ c.search/w.search , c.display/w.display , 
c.sel_prp/w.sel_prop , c.aglist/w.aglist , 
c.sel_ag/w.sel_ag , contact/w.contact_ag , 

agpack/w.ay_ack , agnack/w.an_ack , 
c.assigned/w.assigned , webprop/w.prop_info }. 

 

A.8	CLIENT	and	AGENT	
 
CLIENT = ( c.search-> c.display -> c.sel_prp -> 
c.aglist -> c.sel_ag -> contact -> (agpack -> 
c.assigned -> webprop -> al.qry -> (lq.pack -> 
c.plot_ready -> (c.ay_ack-> c.apply_loan -
>(c.yb_ack -> c.paymeny ->c.deliver -> CLIENT 
|c.nb_ack-> CLIENT) | c.an_ack -> CLIENT)|lq.nack->
 CLIENT)| agnack -> CLIENT)). 
 
 
AGENT = ( a.contact -> ( a.y_ack -> assigned -> 
a.prop_info -> ask_qry -> (l.ay_ack -> a.plot_ready ->( 
c.y_ack-> loan -> (apploan -> pay -> deli -> AGENT | 
rejloan ->AGENT) | c.n_ack -> AGENT)| l.an_ack -
>AGENT) | a.n_ack ->AGENT)). 
 



47 | P a g e  
 

 
||CA = ( CLIENT || AGENT ) /  

{ agpack/a.y_ack, agnack/a.n_ack 
,c.assigned/assigned, webprop/a.prop_info , 

al.qry/ask_qry , lq.pack/l.ay_ack, lq.nack/l.an_ack 
,c.plot_ready/a.plot_ready, c.ay_ack/c.y_ack , 
c.an_ack/c.n_ack, c.plot_ready/a.plot_ready , 

c.apply_loan/loan, c.yb_ack/apploan, c.nb_ack/rejloan ,  
c.payment/pay , c.deliver/deli}. 

	

A.9	WEBSITE	and	PLOTDATA	
 
WEBSITE = ( w.search -> w.send_qry -> w.reply -> 
w.display -> w.sel_prop -> w.aglist -> w.sel_ag -> 
w.contact_ag -> (w.ay_ack -> w.assigned -> 
w.prop_info -> la.qry -> WEBSITE | w.an_ack -> 
WEBSITE)). 
 
PLOTDATA = ( p.send_qry -> p.reply -> PLOTDATA). 
 
||WP = ( WEBSITE || PLOTDATA ) / {w.send_qry/p.send_qry
 ,w.reply/p.reply }. 

	

A.10	CLIENT	and	LANDLORD	
 
CLIENT = ( c.search-> c.display -> c.sel_prp -> 
c.aglist -> c.sel_ag -> contact -> (agpack -> 
c.assigned -> webprop -> al.qry -> (lq.pack -> 
c.plot_ready -> (c.ay_ack -> c.apply_loan -> (c.yb_ack 
-> c.paymeny ->c.deliver -> CLIENT |c.nb_ack -
>CLIENT) | c.an_ack -> CLIENT)|lq.nack -> CLIENT)|
 agnack ->CLIENT)). 
 
 
LANDLORD = ( l.ask_qry -> (l.y_ack -> ready_plot -> 
(rd_pack -> applyloan -> (b.confim -> rcv_payment -> 
deliver -> LANDLORD|b.reject ->LANDLORD)| rd_nack -
> LANDLORD)| l.n_ack -> LANDLORD)). 
 
||CL = ( CLIENT ||LANDLORD ) /  
{al.qry/l.ask_qry , lq.pack/l.y_ack, lq.nack/l.n_ack , 

c.plot_ready/ready_plot , c.ay_ack/rd_pack ,  



48 | P a g e  
 

c.an_ack/rd_nack , c.apply_loan/applyloa,  
c.yb_ack/b.confirm ,c.nb_ack/b.reject ,  

c.payment/rcv_payment , c.deliver/deliver}. 

A.11	CLIENT	and	BANK	
	
CLIENT = ( c.search-> c.display -> c.sel_prp -> 
c.aglist -> c.sel_ag -> contact -> (agpack -> 
c.assigned -> webprop -> al.qry -> (lq.pack -> 
c.plot_ready -> (c.ay_ack -> c.apply_loan -> (c.yb_ack 
-> c.paymeny ->c.deliver -> CLIENT |c.nb_ack -
>CLIENT) | c.an_ack -> CLIENT)|lq.nack -> CLIENT)|
 agnack ->CLIENT)). 
 
BANK = (rcv_loan.req -> (b.pack ->pays -> deliv -> 
BANK|b.nack ->BANK)). 
 
 
||CB = ( CLIENT || BANK ) /  

{c.apply_loan/rcv_loan.req , c.yb_ack/b.pack ,  
c.nb_ack/b.nack , c.payment/pays  , c.deliver/deliv }. 

 

	
A.12	WEBSITE	and	AGENT	
 
WEBSITE = ( w.search -> w.send_qry -> w.reply -> 
w.display -> w.sel_prop -> w.aglist -> w.sel_ag -> 
w.contact_ag -> (w.ay_ack -> w.assigned -> 
w.prop_info -> WEBSITE | w.an_ack -> WEBSITE)). 
 
 
AGENT = ( a.contact -> ( a.y_ack ->assign -> 
a.prop_info -> ask_qry -> (l.y_ack -> a.plot_ready -
>( c.y_ack-> AGENT | c.n_ack ->AGENT)| l.n_ack -
>AGENT) | a.n_ack -> AGENT)). 
 
||WAG = (WEBSITE || AGENT )/  

{w.contact_ag/a.contact , w.ay_ack/a.y_ack ,  
w.assigned/assign , w.prop_info/a.prop_info ,  

w.an_ack/a.n_ack }. 
 

	
	



49 | P a g e  
 

A.13	CLIENT	,	WEBSITE	and	AGENT	
	
CLIENT = ( c.search-> c.display -> c.sel_prp -> 
c.aglist -> c.sel_ag -> contact -> (agpack -> 
c.assigned -> webprop -> al.qry -> (lq.pack -> 
c.plot_ready -> (c.ay_ack -> c.apply_loan -> (c.yb_ack 
-> c.paymeny ->c.deliver -> CLIENT |c.nb_ack -
>CLIENT) | c.an_ack -> CLIENT)|lq.nack -> CLIENT)|
 agnack ->CLIENT)). 
 
 
WEBSITE = ( w.search -> w.send_qry -> w.reply -> 
w.display -> w.sel_prop -> w.aglist -> w.sel_ag -> 
w.contact_ag -> (w.ay_ack -> w.assigned -> 
w.prop_info -> la.qry -> WEBSITE | w.an_ack -> 
WEBSITE)). 
 
 
AGENT = ( a.contact -> ( a.y_ack -> assigned -> 
a.prop_info -> ask_qry -> (l.ay_ack -> a.plot_ready ->( 
c.y_ack-> loan -> (apploan -> pay -> deli -> AGENT | 
rejloan -> AGENT)  
 | c.n_ack -> AGENT)| l.an_ack ->AGENT) | a.n_ack -
> AGENT)). 
||CWA = ( CLIENT || WEBSITE ||AGENT) /  

{ c.search/w.search , c.display/w.display ,  
c.sel_prp/w.sel_prop , c.aglist/w.aglist ,  
c.sel_ag/w.sel_ag , contact/w.contact_ag , 
w.contact_ag/a.contact , agpack/w.ay_ack ,  

agnack/w.an_ack , agpack/a.y_ack ,  
agnack/a.n_ack , c.assigned/w.assigned ,  

c.assigned/assigned , webprop/w.prop_info 
,w.prop_info/a.prop_info , al.qry/ask_qry ,  

lq.pack/l.ay_ack , lq.nack/l.an_ack ,  
c.plot_ready/a.plot_ready , c.ay_ack/c.y_ack ,  

c.an_ack/c.n_ack , al.qry/l.ask_qry ,  
lq.pack/l.y_ack, lq.nack/l.n_ack ,  

c.payment/rcv_payment, c.plot_ready/a.plot_ready , 
a.plot_ready/ready_plot , c.ay_ack/rd_pack ,  
c.an_ack/rd_nack , c.apply_loan/applyloan ,  

c.yb_ack/b.confirm ,c.nb_ack/b.reject ,  
c.apply_loan/loan , c.yb_ack/apploan,  



50 | P a g e  
 

c.nb_ack/rejloan , c.payment/pay ,  
      c.deliver/deliver , 
c.deliver/deli }. 

A.14 CLIENT,	WEBSITE,	AGENT	and	LANDLORD 
	

CLIENT = ( c.search-> c.display -> c.sel_prp -> 
c.aglist -> c.sel_ag -> contact -> (agpack -> 
c.assigned -> webprop -> al.qry -> (lq.pack -> 
c.plot_ready -> (c.ay_ack -> c.apply_loan ->(c.yb_ack 
-> c.paymeny ->c.deliver -> CLIENT |c.nb_ack ->CLIENT) 
| c.an_ack -> CLIENT)|lq.nack -> CLIENT)| agnack -
>CLIENT)). 

WEBSITE = ( w.search -> w.send_qry -> w.reply -> 
w.display -> w.sel_prop -> w.aglist -> w.sel_ag -> 
w.contact_ag -> (w.ay_ack -> w.assigned -> 
w.prop_info -> la.qry -> WEBSITE | w.an_ack -> 
WEBSITE)). 

AGENT = ( a.contact -> ( a.y_ack -> assigned -> 
a.prop_info -> ask_qry -> (l.ay_ack -> a.plot_ready ->( 
c.y_ack-> loan -> (apploan -> pay -> deli -> AGENT | 
rejloan -> AGENT) | c.n_ack -> AGENT)| l.an_ack -
>AGENT) | a.n_ack ->AGENT)). 

LANDLORD = ( l.ask_qry -> (l.y_ack -> ready_plot -> 
(rd_pack -> applyloan -> (b.confim -> rcv_payment -> 
deliver -> LANDLORD|b.reject ->LANDLORD)| rd_nack -
> LANDLORD) | l.n_ack -> LANDLORD)). 

||CWAL = ( CLIENT || WEBSITE ||AGENT || LANDLORD ) /  

{ c.search/w.search , c.display/w.display ,  
c.sel_prp/w.sel_prop , c.aglist/w.aglist ,  
c.sel_ag/w.sel_ag , contact/w.contact_ag , 
w.contact_ag/a.contact , agpack/w.ay_ack ,  

agnack/w.an_ack , agpack/a.y_ack , agnack/a.n_ack , 
c.assigned/w.assigned , c.assigned/assigned , 
webprop/w.prop_info ,w.prop_info/a.prop_info ,  

al.qry/ask_qry , lq.pack/l.ay_ack ,  
lq.nack/l.an_ack , c.plot_ready/a.plot_ready ,  

c.ay_ack/c.y_ack , c.an_ack/c.n_ack , al.qry/l.ask_qry 
, lq.pack/l.y_ack, lq.nack/l.n_ack , 

c.payment/rcv_payment, c.plot_ready/a.plot_ready , 



51 | P a g e  
 

a.plot_ready/ready_plot , c.ay_ack/rd_pack , 
c.an_ack/rd_nack ,  

c.apply_loan/applyloan , c.yb_ack/b.confirm , 
c.nb_ack/b.reject , c.apply_loan/loan ,  

c.yb_ack/apploan, c.nb_ack/rejloan ,  
c.payment/pay , c.deliver/deliver , c.deliver/deli }. 

 

A.15	Real‐Estate	Webservice		

 

CLIENT = ( c.search-> c.display -> c.sel_prp -> 
c.aglist -> c.sel_ag -> contact -> (agpack -> 
c.assigned -> webprop -> al.qry -> (lq.pack -> 
c.plot_ready -> (c.ay_ack -> c.apply_loan ->(c.yb_ack 
-> c.paymeny ->c.deliver -> CLIENT |c.nb_ack ->CLIENT) 
| c.an_ack -> CLIENT)|lq.nack -> CLIENT)| agnack -
>CLIENT)). 
 
 
WEBSITE = ( w.search -> w.send_qry -> w.reply -> 
w.display -> w.sel_prop -> w.aglist -> w.sel_ag -> 
w.contact_ag -> (w.ay_ack -> w.assigned -> 
w.prop_info -> la.qry -> WEBSITE | w.an_ack -> 
WEBSITE)). 
 
 
PLOTDATA = ( p.send_qry -> p.reply -> PLOTDATA). 
 
 
AGENT = ( a.contact -> ( a.y_ack -> assigned -> 
a.prop_info -> ask_qry -> (l.ay_ack -> a.plot_ready ->( 
c.y_ack-> loan -> (apploan -> pay -> deli -> AGENT | 
rejloan -> AGENT) | c.n_ack -> AGENT)| l.an_ack -
>AGENT) | a.n_ack -> AGENT)). 
 
 
LANDLORD = ( l.ask_qry -> (l.y_ack -> ready_plot -> 
(rd_pack -> applyloan -> (b.confim -> rcv_payment -> 
deliver -> LANDLORD|b.reject ->LANDLORD)| rd_nack -
> LANDLORD)| l.n_ack -> LANDLORD)). 
 
 



52 | P a g e  
 

BANK = (rcv_loan.req -> (b.pack ->pays -> deliv -> 
BANK|b.nack-> BANK)). 
 
 
||CWALBP = ( CLIENT || WEBSITE || PLOTDATA ||AGENT || 
LANDLORD || BANK ) /  

{ c.search/w.search , c.display/w.display ,  
c.sel_prp/w.sel_prop , c.aglist/w.aglist ,  
c.sel_ag/w.sel_ag , contact/w.contact_ag , 
w.contact_ag/a.contact , agpack/w.ay_ack ,  

agnack/w.an_ack , agpack/a.y_ack ,  
agnack/a.n_ack , c.assigned/w.assigned ,  

c.assigned/assigned , webprop/w.prop_info 
,w.prop_info/a.prop_info , al.qry/ask_qry ,  

lq.pack/l.ay_ack , lq.nack/l.an_ack ,  
c.plot_ready/a.plot_ready , c.ay_ack/c.y_ack ,  

c.an_ack/c.n_ack ,al.qry/l.ask_qry ,  
lq.pack/l.y_ack, lq.nack/l.n_ack ,  

c.payment/rcv_payment, c.plot_ready/a.plot_ready , 
a.plot_ready/ready_plot , c.ay_ack/rd_pack , 
 c.an_ack/rd_nack , c.apply_loan/applyloan ,  

c.yb_ack/b.confirm ,c.nb_ack/b.reject ,  
c.apply_loan/loan , c.yb_ack/apploan,  

c.nb_ack/rejloan , c.payment/pay ,  
c.deliver/deliver , c.deliver/deli ,  

c.apply_loan/rcv_loan.req ,  
c.yb_ack/b.pack , c.nb_ack/b.nack ,  
c.payment/pays  , c.deliver/deliv ,  

w.send_qry/p.send_qry ,w.reply/p.reply }. 

	

	
	

	

	

	

	



53 | P a g e  
 

Appendix	B	
 
 
B.1	CLIENT	process	
 
property SAFE_B = ( c.nb_ack -> cancel_order -> 
SAFE_B). 
 
property SAFE_A = ( c.an_ack ->cancel_rcv_qt -> 
SAFE_A). 
 
||SAFE_CLIENT = ( CLIENT || SAFE_B || SAFE_A ). 
	
B.2		WEBSITE	process	
	
property SAFE_AG = (w.an_ack -> cancel_agent -> 
SAFE_AG). 
 
||SAFE_WEB = ( WEBSITE || SAFE_AG ). 
	
B.3	AGENT	process	
	
property SAFE_C = (c.n_ack -> cancel_order -> SAFE_C). 
 
property SAFE_LA = (l.n_ack -> not_available -> 
SAFE_LA). 
 
property SAFE_A2 = (a.n_ack -> cancel_ag -> SAFE_A2). 
 
||SAFE_AGENT = ( AGENT ||SAFE_C || SAFE_LA || SAFE_A2). 
	

B.4	LANDLORD	process	
	
property SAFE_LAN = (l.n_ack -> not_available -> 
SAFE_LAN). 
 
||SAFE_LAND = ( LANDLORD || SAFE_LAN ). 

B.5	BANK	process	
 
property SAFE_BA = (b.nack -> cancel_order -> SAFE_BA). 
 
||SAFE_Bank = ( BANK|| SAFE_BA). 



54 | P a g e  
 

References 
	

[1] H. Foster, S. Uchitel, J. Magee, and J. Kramer, “Compatibility verification for 
web service choreography,” Proc.	 ‐	 IEEE	 Int.	 Conf.	Web	 Serv., pp. 738–741, 
2004. 

[2] S. H. Ripon, “Process algebraic support for web service composition,” ACM	
SIGSOFT	Softw.	Eng.	Notes, vol. 35, no. 2, p. 1, Mar. 2010. 

[3] “Web Service Composition - an overview | ScienceDirect Topics.” [Online]. 
Available: https://www.sciencedirect.com/topics/computer-science/web-
service-composition. [Accessed: 09-Sep-2019]. 

[4] F. Daniel, “Web Service Orchestration and Choreography,” in E‐Business	
Models,	Services	and	Communications, 2011. 

[5] Concurrency:	 State	Models	&	 Java	Programs,	 2nd	Edition	 byJeff	MageeandJeff	
Kramer	John	Wiley	&	Sons	2006	(432, vol. 2006. 2006. 

[6] “FSP-notation.” [Online]. Available: 
https://www.doc.ic.ac.uk/~jnm/LTSdocumention/FSP-notation.html. 
[Accessed: 09-Sep-2019]. 

[7] “Internet real estate - Wikipedia.” [Online]. Available: 
https://en.m.wikipedia.org/wiki/Internet_real_estate. [Accessed: 09-Sep-
2019]. 

	


	Report-cover-pages(1)
	last
	remakeBook(1)

