

East West University
Department of Electronics and Communications Engineering

Research Project Report

Web and Software Security

Submitted By:

Name: Ashikin Talaha

ID: 2015-1-50-031

Name: Ayan Chowdhury

ID: 2016-1-50-016

Supervisor:

Mohammad Rafsun Islam

Lecturer, Department of ECE

i

Declaration

We, hereby, declare that the work presented in this thesis is the outcome of the investigation

performed by us under the supervision of Mohammad Rafsun Islam, Lecturer, Department of

Electronics and Communications Engineering, East West University. We also declare that no part

of this thesis has been or is being submitted elsewhere for the award of any degree or diploma.

Countersigned

(Mohammad Rafsun Islam)

Supervisor

Signature

(Ashikin Talaha)

(ID: 2015-1-50-031)

Signature

(Ayan Chowdhury)

(ID: 2016-1-50-016)

ii

Letter of Acceptance

This thesis report entitled “Web and Software Security” submitted by Ashikin Talaha (ID: 2015-

1-50-031), Ayan Chowdhury (ID: 2016-1-50-016) to the Department of Electronics and

Communications Engineering, East West University is accepted by the department in partial

fulfillment of requirements for the Award of the Degree of Bachelor of Science and Engineering

on August, 2019.

Supervisor:

Mohammad Rafsun Islam

(Lecturer),

Department of Electronics and Communications Engineering

Dr. Mohammad Moseeur Rahman

(Chairperson and Assistant Professor),

Department of Electronics and Communications Engineering,

East West University.

iii

Acknowledgement

As it is true for everyone, we have also arrived at this point of achieving a goal in our life through

various interaction and help from various people. However, written words are often elusive and

harbor diverse interpretations even in one’s mother language. Therefore, we would not like to

make efforts to find best words with us in this paper. This work was carried out in the Department

of Electronics and Communications Engineering at East West university, Bangladesh.

We would like to express our sincere thanks to our Thesis supervisor Lecturer Mohammad Rafsun

Islam for his endeavor help and cooperation in completion of the thesis. He constantly encouraged

us with his valuable and wise suggestions throughout the thesis life cycle.

We would also like to thank faculty members of our university for their kind interest at various

points of fellow the Thesis life-cycle and we also wish to thank all the members of Department of

Electronics and Communications Engineering at East West University.

Ashikin Talaha

December, 2019

Ayan Chowdhury

December,2019

iv

Table of Contents

Contents
Declaration.. i

Letter of Acceptance .. ii

Acknowledgement .. iii

Table of Contents .. iv

Table of Figure: .. vi

List of Tables: .. vii

Abstract: ... viii

Chapter 1 ..1

INTRODUCTION:..1

Chapter 2 ..7

BACKGROUND ...7

2.1 Web Applications with Common Vulnerabilities: ..7

2.2 Necessity: ..8

2.3 Vulnerabilities ...8

2.3.1 WORDPRESS USERNAME ENUMERATOR: ...8

2.3.2 SENSITIVE FILE DETECTOR: ..9

2.3.3 SUB-DOMAIN SCANNER:...9

Second-Order Subdomain: ... 10

2.3.4 NECESSITY of PORT SCANNING ... 11

2.3.5 WORDPRESS SCAN ... 12

2.3.7 WORDPRESS BACKUP GRABBER .. 14

2.3.8 SQL INJECTION ... 14

v

2.3.9 Necessity of this Project .. 15

Chapter 3 .. 17

Literature Survey or Review: ... 17

Chapter 4 .. 21

INTERNAL ARCHITECTURE: .. 21

4.1 detectors Folder ... 21

4.2 Code Description ... 23

4.2.1 d-tect.py.. 23

4.2.2 d-tect.py: Function dtect() ... 24

4.2.3 d-tect.py: Function menu () ... 25

4.2.4 d-tect.py: Function sock(i,secrectswitch=0) .. 27

4.2.5 d-tect.py: Function cloudflare() ... 29

4.2.6 d-tect.py: Function alive() ... 30

4.2.7 d-tect.py: Function responseheadercheck() .. 31

4.2.8 d-tect.py: Function parameterarrange(payload) ... 32

4.2.9 d-tect.py: Function SQLIscan(site) .. 34

4.2.10 d-tect.py: Function XSSscan(site) ... 36

4.2.11 d-tect.py: Function portscanner() .. 39

4.2.12 d-tect.py: Function subdomainscanner() .. 42

4.3 Result: ... 44

Chapter 5 .. 50

Conclusion and Further Development.. 50

Bibliography: .. 52

Appendix: ... 55

vi

Table of Figure:

FIGURE 4. 1: ROOT-DIRECTORY -- 21

FIGURE 4. 2: DETECTOR FOLDER --- 21

FIGURE 4. 3: MODULES -- 22

FIGURE 4. 4: USAGE OF ‘RESET’ -- 24

FIGURE 4. 5: COLOR ATTRIBUTES -- 24

FIGURE 4. 6: AUTHORS -- 24

FIGURE 4. 7: MENU --- 25

FIGURE 4. 8: SWITCHES -- 26

FIGURE 4. 9: SOCKET -- 27

FIGURE 4. 10: CLOUD-FLARE -- 29

FIGURE 4. 11: ALIVE --- 30

FIGURE 4. 12: ALIVE FUNCTION OUTPUT -- 30

FIGURE 4. 13: RESPONSE-HEADER -- 31

FIGURE 4. 14: PARAMETER-ARRANGE --- 32

FIGURE 4. 15: SQL-SCAN --- 34

FIGURE 4. 16: XSS SCAN -- 37

FIGURE 4. 17: PORT SCAN-ONE --- 39

FIGURE 4. 18: SUBDOMAIN --- 42

FIGURE 4. 19: SCAN – 1 --- 44

FIGURE 4. 20: SCAN- 2 -- 44

FIGURE 4. 21: SCAN – 2 --- 45

FIGURE 4. 22: SCAN – 3 --- 46

FIGURE 4. 23: SCAN-4--- 46

FIGURE 4. 24: SCAN-4--- 47

FIGURE 4. 25: SCAN – 5 --- 47

FIGURE 4. 26: SCAN- 6 -- 48

FIGURE 4. 27: SCAN – 7 --- 48

vii

List of Tables:

TABLE 1: VULNERABLE WEB APPLICATIONS -- 7

TABLE 2: DIFFERENT PORT NUMBERS AND NAME OF PORTS. --- 11

TABLE 3: MODULES -- 23

viii

Abstract:

About 200 million websites are active at present. Billions of people use web applications for

transferring information, money and communicating with each other. Web applications are made

by humans. So, there may exist many kinds of vulnerabilities. The main reason for the weakness

is the lack of choosing the proper programming languages. There are a lot of web application

attacks that are existing now such as SQL injection, Buffer overflow, security misconfiguration,

cross-site scripting, etc. So, the security issues of web applications are a great concern in presents.

Developers are very interested to know about any kind of attack. In this project, we have created

a tool to find different types of web application vulnerabilities of particular websites. This ‘D-tect’

tool will check eight dangerous and critical web application attacks. They are WordPress username

enumerator, sensitive file detector, sub-domain scanner, port scanner, WordPress scanner, cross-

site scripting (XSS), WordPress backup grabber, SQL injection. The tool will show host address,

IP address, header information, the vulnerable scopes and server of the web application. There will

be also detection of WordPress as it is mentioned that some vulnerabilities may arise due to using

WordPress. The tool will check 1904 ports to find out the vulnerable ports. Sub-domains may have

vulnerable DNS resolver that may help the attacker to exploit a system. That will be also scanned

by the tool. The WordPress backup system will be also analyzed to find whether it is vulnerable

or not. So, the tool will check for particular ports and try to inject different types of attacks. Then

the corresponding result will be visible. This tool is created by using python and different modules

and functions of python. There are different types of modules and functions are used to create the

tool. the program can be run till the user wants to stop scanning.

1

Chapter 1

INTRODUCTION:

A web application or in short web app is a group of servlets, html pages, classes and other scripts

which can be combined and executed on various platform from multiple vendors. It is computer

program which perform operations on the internet by utilizing web browsers and web technologies.

Any web application basically uses a group of server-side scripts like PHP and ASP to manage the

information storage and retrieval of information. The client-side scripts are JavaScript and HTML

which presents the information to users which are requested. Most of the web applications have

used JavaScript, HTML5 and CSS. The client-side programming languages basically utilize the

languages and build an application front-end. The server-side programs are done by using Python,

Java or Ruby to create scripts for web applications. When a user generates a request to the web

server though web browser or the applications user interface, the web server sends the request to

particular web application server. Then the server is initialized to perform the requested task like

fetching information from the database, or other processing methods to generate results and send

to the particular user.

A lot of functions are used for web application. the most important functions are menu functions,

script functions, A5w_DeleteFromWebRespository function, enumerate function, save to web app

function, all web files function, edit component style function, get from web app function,

A5_HTML_LIST_ADO function etc. A website can represent multiples of web application. Every

web application has two users. The first one is business user which basically indicates the web

provider. This user basically defines the functions for the end users. The end user does not have

the interference or selection of designing for the web application. So, the web components for any

web application is business application functionality, security, email components, forum. The

components are added or modified on a regular basis. The web applications can be characterized

to two types which are collections of static HTML pages and online application (simple form fill-

up and information provision application and fully functioned business application).

2

There are several types of web applications. Static web application, dynamic web application, e-

commerce, portal web app, animated web application, content management web application. The

static web applications are basically developed in HTML and CSS. It can be also developed by

jQuery and Ajax. It displays a little content and in not very flexible. Modification of contents is

not easy in static web page. The html code must be downloaded and then the modification can be

done. A static web application may consist of professional portfolios or different types of

curriculums. Dynamic web applications are much complex in technical level and developed with

PHP and ASP languages. This type of web applications use database to load data. The data of these

applications updates with the requests of user at each time. In this type of web application, content

upgrading or modification is very easy and the server doesn’t even need to be accessed. Online e-

commerce application is a bit complicated than the dynamic web application. It is like a shop on

online. It has a new feature which is electrical payment methods. These web application needs

some administrative panel. Portal web app is kind of application that includes several of sections

or categories by a homepage. These applications can include many different features like chat,

forum, emails etc. through registration. Another type of web application is animated web

application. It is associated with flash technology. It allows to present contents with animated

effects. But they are not suitable for web positioning and SEO optimization aims due to search

engines cannot read the information which they contain. Another type is web application with

content management system. This type of web application contains content management system

(CMS) which is used to implement the changes and updates from the administrator. WordPress,

Joomla, Drupal etc. are some popular CMS methods. WordPress is the most popular content

manager for web application. It is very easy to customize and realize how does it works. It is a free

version to all. Other versions of CMS are very useful to build communities[1]. The web

applications are a great advantage for our daily life. By means of web application, works can be

done from anywhere at any time. It saves the time and efforts to setup a physical software by

downloading, installing, updating or managing. Web applications are compatible with any kind of

current devices and platforms. Mobile web application allows user to connect the software without

opening the computer or laptop. Web applications are scalable and pay per use system. They are

always up-to-date with new technologies. Web applications does not need to build for all operating

system version and testing. Web applications can be developed on a single platform and the testing

can be done. So, web application development is very cost-effective development. It can be

3

configured with any kind of system and interface. User can access to a web application from any

place within a few times. This helps people to collaborate, communicate, and do so many other

things at a time. It seems like real time collaboration, working or communicating. The web

applications are easily customizable. The user interface can be easily customized rather than the

desktop applications. It helps to update and charm look of the application. So, all users do not need

to use the same configured settings of the application. In addition, most of the web applications

are supported on various types of devices like mobile, laptop, android, PDA, tablets which are

connected to internet.it is easier and comfortable to installation and maintenance. A web

application can be easily implemented to online based shopping cart systems. Web applications

have the most adaptable feature for increased numbers of workloads. Since it is easy to customize

a web application, developers can add more database or servers to increase the performance overall

having increased load to web application. Web applications are secured and have flexible core

functionalities which makes them very useful and user friendly.

With the growth of web application, security concerns arise. There are thousands of websites are

running on world. Some is for business, some for education, some for social mediums, some for

storing data, and some for organization and so on. The World Wide Web has become one of the

most important and global information mediums in the world[2]. The process of securing web

applications is difficult as they are naturally open to public which may include malicious users.

The inputs of web applications come from the http requests that are difficult to process accurately.

So, improper or missing input validation may result in security vulnerabilities in web

applications[3]. The attackers can apply many different approaches to the application to extract

information and do potential harm to that particular web application. Sometimes the paths may

come trivial to find and exploit. The contrast can be happened[4]. The main reasons for most of

the web applications vulnerability is the lack of input validation and sanitization from the input.

The vulnerabilities give the attacker an opportunity to perform malicious actions and collect

sensitive information from the application to gain unauthorized access[5]. There are various types

of web application attacks in now-a-days. SQL injection is the oldest and most dangerous attack

still now. As the web applications rely on databases, so attacker choose to attack the database.

They basically use malicious code which is inserted into strings. These strings are sent to the SQL

4

server for performing the parsing and execution. This attacking process works by terminating the

string unconsciously and appending into new command line. The SQL servers executes all the

syntactically valid queries which the server receives. Cross site scripting is another web application

attack type. It is a client-sided code injecting attack. As the web applications are built with different

scrip languages, the attacker tries to inject malicious script in web browser as the distinguish of

real web page. The actual attack happens when the user clicks on the web application the code

start executing malicious script codes by itself. Then the web application becomes the medium to

exporting the malicious scripts to user`s browser. A web application becomes vulnerable to XSS

if it uses any kind of unsanitized and unprocessed user input. This may result in malicious script

execution and stealing of user’s cookie information from the browser. This helps attacker to

achieve unauthorized access[6]. WordPress is an open and online source to build websites which

is written in PHP. It is the most powerful blogging platform with website content management

system. WordPress user enumeration is the technique to find out the users of WordPress

installation. There are three enumeration techniques that are very fast approach to find the list of

users of WordPress installation. After knowing the valid usernames brute force can be attempted

to guess the password of those accounts. The three techniques are enumeration via author, JSON

API, and via the login form. This may lead to inconsistency[7]. A significant risk can be

represented by uploaded files to the web application. Because the attackers build codes to run on

the application. The file upload option can help the attackers to perform such actions. So, sensitive

files must be detected on the application. Subdomain is the additional part of main domain name

of any web application. The subdomains are formed to categories and navigate the different

segments of website[8]. The subdomain can be taken over by attacker. This deletes or removes the

service that the subdomain was providing. The attacker will create a service with the additional

same information pointing the same subdomain. Ports are the module of electronic, software of

programming related docking point by which information can flow between two end users. The

web applications can have multiple ports. There are ports for FTP, SMTP, HTTP, HTTPS, and

TELNET etc. The attacker tries to find out the potential open ports to perform attack. This process

can be done by port scanning. There are many websites that are running on WordPress. A web

application can be attacked by scanning the WordPress information. There are several things which

are vulnerable in a WordPress system such as themes, plugins, hosting vulnerability etc.[9]. There

are many plugins in WordPress that can help to back up the WordPress information. It saves the

5

complete installation and push them to external back up services. There are lot of approach to

attack a WordPress web application. So, the backup grabber can be very dangerous for any kind

of web applications. Though web applications can be secured by various methods, vulnerability

testing and penetration testing is a unique process for securing web applications. It may help to

find out the system vulnerabilities too[6]. There are various reasons that motivates an attacker to

attack a web application. The major reasons are stealing sensitive and personal and organizational

information, spreading malware, defacement of a web application and some for unnecessarily or

out of curiosity, blackmailing, spreading spam, phishing, fraud etc.[2]. Attackers can be motivated

to attack a web application to gain financial access. This can be done by stealing the credit card

harvesting or other online payment account number and the pin from a web application. Some

attacker may try to attack a web application to preventing real users from accessing into the web

app system. They may show the user threatening messages or fake messages during accessing into

the web application. The attacker may make the server so busy that it will not accept the request

of a user until the false requests are processed from the buffer. Attacker can also attack a well

secured web application to make bad impression about the app to users. Web applications can be

attacked due to popularity. Popularity means more visitor will visit the web application. So, the

intention of stealing information from the users may motivate an attacker to attack. This may also

a newsworthy task. So, to get popularity the attackers may tend to attack popular web applications.

Besides, attacking different web applications may occur due to perform various protest against

government. Religious and corporate web applications can be attacked to perform protest. The

attacking can be happened due to political reasons. The exposure of political confidential data may

give advantage to some organization along with the attacker. These kinds of attack can be done by

some group that has particular demands. All the attackers may not come from outside. Most of the

attacks are done by the insider of any organization or government employees. They disclose the

sensitive and confidential information about the web application system that helps the main

attacker to gain the access for exploiting[2].

Our tool ‘D-TECT’ will run penetration testing to web applications to find out potential

vulnerabilities. This will also show the related information to any web application. In our project,

we have worked to identify recent most 8 web application vulnerabilities. The tool ‘D-TECT’ will

6

sequentially perform different scanning and attempt to find out the vulnerable segments of any

particular web application and website. The detection of expected scanning must be inputted along

with the web application link. Then the tool ‘D-TECT’ will start performing the scanning and

finding any vulnerable areas. The tool always shows the header type of the particular web

application. After finishing first scan, the tool will ask for the second option and if no other

scanning is required then the exit option is also included to the tool. The tool shows the server

system that the web application is using. The tool ‘D-TECT’ is one of the best options to find out

the vulnerabilities of a web application. This may help to strengthen the security of a web

application and make them more secure for the users.

7

Chapter 2

BACKGROUND

2.1 Web Applications with Common Vulnerabilities:

This is a web application Vulnerability Testing app. So far, I think we all have known something

about web application and its vulnerabilities.

Here is a table showing Vulnerable web applications

Name URL Technology Credential

Acunetix

Acuforum

http://testasp.vulnweb.com/ IIS, ASP,

Microsoft SQL

Server

unknown

Acunetix Acublog http://testaspnet.vulnweb.com/ IIS, ASP.NET,

Microsoft SQL

Server

unknown

Acunetix

SecurityTweets

http://testhtml5.vulnweb.com/ nginx, Python,

Flask, CouchDB

admin:admin:1234

Acunetix Acuart http://testphp.vulnweb.com/ Apache, PHP,

MySQL

unknown

bWAPP http://bwapp.ywnxs.com/ Ubuntu, Nginx,

PHP

user: bee:bug

Table 1: Vulnerable web applications

These are some dummy sites that can be used for practicing or testing how they are vulnerable.

These websites have some common vulnerability like the First one contains ‘SQL-injection’, the

Second one contains ‘XSS or Cross Site Scripting’, third one has ‘Word-press Vulnerability’. The

fourth one contains some backup file links in its word-press, And the last one has sensitive files

[10].

http://testasp.vulnweb.com/
http://testaspnet.vulnweb.com/
http://testhtml5.vulnweb.com/
http://testphp.vulnweb.com/
http://bwapp.ywnxs.com/

8

All these Vulnerabilities are very common and easy to find and also the oldest. But it’s very sad

to say that these vulnerabilities still do exist in some of the web applications we use.

2.2 Necessity:

Nowadays there is a lot of entrepreneurs who want to develop their own business. Most of them

do not have that much technical knowledge. But whether you have the technical knowledge or not

you must have some digital existence of your company like an app or a simple web site. But being

new in the market they don’t want to spend that much money on this, so they contact noob

developers for this job. Normally most of them build this kind of static apps or website by only

downloading a simple template. They don’t even know properly what this template’s code

contains. This makes them vulnerable.[11]

2.3 Vulnerabilities

There are 8 common vulnerabilities that can be found on a website or app. And for our project, we

have also worked on these 8 vulnerabilities. Now let’s see them in detail and how they are

vulnerable.

2.3.1 WORDPRESS USERNAME ENUMERATOR:

Web applications usually use an authentication mechanism to prevent unauthorized/anonymous

users to access the application’s protected resources and functionalities. Attackers always try to

find weaknesses in the authentication mechanism to get into the protected resources and

functionalities.

Username enumeration is one of the most popular attacks that are performed on the authentication

mechanism to identify the valid usernames on the system.

In many WordPress installations, it is possible to enumerate WordPress usernames through the

author archives, including the admin username. To access the author archives, we just need to add

author=n (where n equals any integer) as a parameter to the WordPress home page like the

following:

9

http://example.com/?author=1

The request automatically will be redirected by WordPress to its counterparts:

http://example.com/author/admin/

Using this method, we will able to identify all the usernames by fuzzing the author parameter.

Word-press username can also be accessed by an error message.

2.3.2 SENSITIVE FILE DETECTOR:

Uploaded files represent a significant risk to applications. The first step in many attacks is to get

some code to the system to be attacked. Then the attack only needs to find a way to get the code

executed. Using a file upload helps the attacker accomplish the first step.

The consequences of unrestricted file upload can vary, including complete system takeover, an

overloaded file system or database, forwarding attacks to back-end systems, client-side attacks, or

simple defacement. It depends on what the application does with the uploaded file and especially

where it is stored.

There are really two classes of problems here. The first is with the file metadata, like the path and

file name. These are generally provided by the transport, such as HTTP multi-part encoding. This

data may trick the application into overwriting a critical file or storing the file in a bad location.

One must validate the metadata extremely carefully before using it.

The targeted files are often configuration files that contain critical information for the operation of

the application or website. The attacker can access this type of files if the server is not properly

configured. For example, if access to indexes has not been blocked, the attacker can easily access

to the sensitive files.

2.3.3 SUB-DOMAIN SCANNER:

Most hackers' senses start tingling at this point. 404 page indicates that no content is being served

under the top-level directory and that we should attempt to add this subdomain to our personal

10

GitHub repository. Please note that this does not indicate that a takeover is possible on all

applications. Some application types require you to check both HTTP and HTTPS responses for

takeovers and others may not be vulnerable at all.

Second-Order Subdomain:

Second-order subdomain takeovers, what I like to refer to as "broken link hijacking"[12], are

vulnerable subdomains that do not necessarily belong to the target but are used to serve content on

the target's website. This means that a resource is being imported on the target page, for example,

via a blob of JavaScript and the hacker can claim the subdomain from which the resource is being

imported. Hijacking a host that is used somewhere on the page can ultimately lead to stored cross-

site scripting since the adversary can load arbitrary client-side code on the target page. The reason

why I wanted to list this issue in this guide, is to highlight the fact that, as a hacker, I do not want

to only restrict myself to subdomains on the target host. You can easily expand your scope by

inspecting source code and mapping out all the hosts that the target relies on.

Now that we have a high-level overview of what it takes to serve content on a misconfigured

subdomain, the next step is to grasp the huge variety of techniques, tricks, and tools used to find

vulnerable subdomains.

Before diving right in, we must first differentiate between scraping and brute-forcing, as both of

these processes can help you discover subdomains, but can have different results. Scraping is a

passive reconnaissance technique whereby one uses external services and sources to gather

subdomains belonging to a specific host. Some services, such as DNS Dumpster and VirusTotal,

index subdomains that have been crawled in the past allowing you to collect and sort the results

quickly without much effort

And for brute-forcing is a direct attacking technique where the hacker directly tries the break the

system by continuously attacking the server with a different combination of passwords.

11

2.3.4 NECESSITY of PORT SCANNING

We all know there are total of 65535 ports on a computer. But some common ports get usually

hacked like TCP or UDP ports.

 Port number Protocol’s name

 21 FTP (File Transfer Protocol)

 22 SSH (Secure Shell)

 23 Telnet

 25 SMTP (Simple Mail Transfer Protocol)

 53 DNS (Domain Name System)

 443 HTTP (Hyper Text Transfer Protocol)

 110 POP3 (Post Office Protocol 3)

 135 Windows RPC

 137-139 Windows NetBIOS over TCP/IP

 1433 & 1434 MSS (Microsoft SQL Server)

Table 2: Different Port numbers and Name of ports.

These ports get usually hacked because some misconfiguration or careless attitude of the user may

keep the ports open. If it’s possible to find an open port then it’s easy to run an exploit on that

specific port. Mostly they are considered as payloads.

Most people working in an office or organization might not know what ports are usually is. But

they just use them. Most of the ports get opened automatically when a service is called in and it

gets closed automatically with the service being closed. These are several apps or services that

need to run in the background. For a non-technical guy, it is quite hard to find out which services

are running in the background. So usually they kept that services open. This makes a port

vulnerable to a hacker for taking advantage.

In web application security port scanning covers a major part. That’s why there are several tools

dedicated to port scanning’s like Nmap or Nikto app in Kali Linux.

Besides, there are many other ports that can be vulnerable. SSH or telnet are used for establishing

a remote connection. A hacker can create a honeypot attack and make these ports vulnerable [13].

12

2.3.5 WORDPRESS SCAN

Nowadays all of the websites are made on word-press themes. And the developments of the

application are done using Word-press plugin.

There can be 5 main word-press vulnerabilities.

POOR HOSTING

All web hosts are not created equally. Some web-hosts are cannot separate user account properly.

WORDPRESS LOGIN

Word-press login systems are the most vulnerable system that hacker attacks. Word-press can be

vulnerable to misconfiguration. Word-Press uses SQL for the database. In SQL all data is saved

under a rooted tree. So, if one root dumped then all the other information under that root will also

be dumped easily [14].

OUTDATED SOFTWARE

Most of the services on a web-application are word-press themes

Which may bring some special vulnerabilities with it.

2.3.6 CROSS SITE SCRIPTING

Of all the attacks we talked about so far, Cross-Site Scripting is the newest one at which still 60%

of the websites are vulnerable

Cross-Site Scripting (XSS) attacks are a type of injection, in which malicious scripts are injected

into otherwise benign and trusted websites. XSS attacks occur when an attacker uses a web

application to send malicious code, generally in the form of a browser side script, to a different

end-user. Flaws that allow these attacks to succeed are quite widespread and occur anywhere a

web application uses input from a user within the output it generates without validating or encoding

it.

An attacker can use XSS to send a malicious script to an unsuspecting user. The end user’s browser

has no way to know that the script should not be trusted, and will execute the script. Because it

thinks the script came from a trusted source, the malicious script can access any cookies, session

13

tokens, or other sensitive information retained by the browser and used with that site. These scripts

can even rewrite the content of the HTML page.

There are mainly two types of XSS

1. Sorted XSS

2. Reflected XSS

Stored XSS Attacks

Stored attacks are those where the injected script is permanently stored on the target servers, such

as in a database, in a message forum, visitor log, comment field, etc. The victim then retrieves the

malicious script from the server when it requests the stored information. Stored XSS is also

sometimes referred to as Persistent or Type-I XSS.

Reflected XSS Attacks

Reflected attacks are those where the injected script is reflected off the web server, such as in an

error message, search result, or any other response that includes some or all of the input sent to the

server as part of the request. Reflected attacks are delivered to victims via another route, such as

in an e-mail message, or on some other website. When a user is tricked into clicking on a malicious

link, submitting a specially crafted form, or even just browsing to a malicious site, the injected

code travels to the vulnerable web site, which reflects the attack back to the user’s browser. The

browser then executes the code because it came from a "trusted" server. Reflected XSS is also

sometimes referred to as Non-Persistent or Type-II XSS [15].

In this project, we have used 3 injectable commands as payloads the commands are

1: 'd4rk();"\'\\/}{d4rk',

2: 'd4rk</script><script>alert(1)</script>d4rk',

3: '<d4rk>'

14

2.3.7 WORDPRESS BACKUP GRABBER

Most of the word press sites Use word-press plugins for database or any related services. For

example, backing up the user data and Use them whenever needed. That means a lot of work.

Making that data visible in real-time.

For these purposes, 80% of the web-applications use word-press Theme plugins.

Almost all of them are very cheap so they offer very limited services. And some backdated plugins

or software for free.

These plugins are not well maintained so it has some configuration file hidden in it which makes

them vulnerable. In this project, we have tried to find out if there are any such files by creating a

dictionary and assigning the names configuration file in the dictionary.

The names are

'wp-config.php~','wp-config.php.txt','wp-config.php.save','.wp-config.php.swp','wp-

config.php.swp','wp-config.php.swo','wp-config.php_bak','wp-config.bak','wp-

config.php.bak','wp-config.save','wp-config.old','wp-config.php.old','wp-config.php.orig','wp-

config.orig','wp-config.php.original','wp-config.original','wp-config.txt'

2.3.8 SQL INJECTION

SQL Injection (SQLi) is a type of an injection attack that makes it possible to execute malicious

SQL statements. These statements control a database server behind a web application. Attackers

can use SQL Injection vulnerabilities to bypass application security measures. They can go around

authentication and authorization of a web page or web application and retrieve the content of the

entire SQL database. They can also use SQL Injection to add, modify, and delete records in the

database.

An SQL Injection vulnerability may affect any website or web application that uses an SQL

database such as MySQL, Oracle, SQL Server, or others. Criminals may use it to gain unauthorized

access to your sensitive data: customer information, personal data, trade secrets, intellectual

15

property, and more. SQL Injection attacks are one of the oldest, most prevalent, and most

dangerous web application vulnerabilities. The OWASP organization (Open Web Application

Security Project) lists injections in their ‘OWASP Top 10’ 2017 document as the number one

threat to web application security [16].

In this project we have used 3 injectable commands they are:

1. 105 OR 1=1

2. '"'

3. '\''

2.3.9 Necessity of this Project

As all this website is made using different services so most of the time the developers don’t really

know all about the underlying code. This is the biggest problem to face while this kind web-

applications are used in the production level.

If any problem occurs it will take a long time to find out where is the problem. But before using

any website actively the user can use this app to find out whether there is any problem with this

web application.

This app is can act as a developer’s tool. They can use this tool after finishing the development to

check whether their developed project is vulnerable or not.

Besides all these this app plays a vital role in reconnaissance or information gathering. There are

a lot of apps who does vulnerability test for a specific domain. But they just analyze the domain

and submit output only when the page is vulnerable. Also, the report contains only the information

about the vulnerability. It’s limited because they don’t give much information about anything else.

If anyone tries to find out any vulnerability using our app then it will give all the information

related to that vulnerability. For example, if anyone want to do a port scanning then he all also see

an analyzed result of the code for the particular website or web-application.

Later in the 5th chapter I have discussed more about this part.

As the user who will use this will also have the access to the code because it’s still not executable

app. There are several payloads for XSS scan and checking SQL-injection. These two are the most

16

common vulnerabilities that can be found in a modern web-application. But they might not be

vulnerable for the same payload again and again. So, as we have the access of the code, we can

change the payloads whenever we want. The report of this app is sorted in such a manner that any

person who is not a technical guy can read through the report and understand it and if any user

wants know more about the vulnerability then there are links of several documentation attached

with the report.

17

Chapter 3

Literature Survey or Review:

With the advancement of web applications, security concerns arise. Web applications contain huge

information about users and the company. But web applications may contain different types of

vulnerabilities. The vulnerability means that there is a chance of getting attacked and losing

information. In 2017, about 48% of web applications were at serious security risk of unauthorized

access. About 91% attack was for client-side and 79% attack was for information leakage.

Statistics say that about 70 types of weakness are existing in web applications in 2018. In these

attacks, cross-site scripting is the most common and dangerous attack. The percentage has been

increased to 88.5% in 2018 than in 2017 [17]. So different approaches are held to run an efficient

web application scanning for finding vulnerabilities. This segment will describe some approaches

in web application vulnerability searching that have been conducted.

In July 2009, Gencer Erdogan has proposed several techniques for testing the security of web

applications. The main motivation was to develop methodologies and tools for securing web-based

applications. The chosen methodologies were Agile Securing Testing, A penetration testing

Approach, The OWASP Testing Framework. The OWASP testing framework is only designed for

web applications. The proposed tool is Acunetix Web Vulnerability Scanner. It is an automated

security testing tool with high coverage. It saves the results of crawling to fast inspection. The tool

produces less false reports. This helps to minimize the time in scanning [18].

In August 2011, Frank van der Loo, has been described some web application vulnerabilities such

as SQL injection, Xpath injection, XSS, CSRF (Cross-Site Request Forgery), Local file inclusion,

HTTP response splitting, SSI injection, etc. To find out web application vulnerabilities the author

(Frank) has suggested some commercial tools. He proposed that these tools can be used for web

application vulnerability scanning. HP webinspect, Jsky, w3af, Websecurify, Wapiti, Arachni, etc.

are the suggested tools. These tools were selected because they could detect the OWASP top 10

attacks easily [19].

18

In January 2013, Jose Enrique Charpentier had proposed for the web application security. In his

paper, it is described that the security of web application is beneath in network security, the

configuration of Operating system security measures and the webserver. Some doubts are shown

for the firewall of the operating system. Some mentioned threats for any network are DDos,

Session hijacking, spoofing, sniffing, Information gathering. The main threats that target a web

server are unauthorized access, lacking in privileges setting up, denial of service, etc. During the

research, some testing tools had been used to find web application vulnerabilities. The tools were

hydra, SQLiX, Netsparker, and Fiddler. Hydra is used as a medium to gain an unauthorized remote

connection to a web application system by login cracker. The SQLiX is a SQL injection scanning

tool that is written in Perl. It crawls a web application and detects for SQL injection. It also

identified the back-end of the database system and catches the functions that are running.

Netsparker is a web application security scanner tool that reports false-positive status about the

web application. Fiddler is a debugging proxy tool that looks for all logs of all the HTTP(S) traffic

between the host computer and the internet. In this paper, the result of web application scanning

is done by a pie chart. The vulnerability analysis ensures web application security. SQL injection

is a complex problem. There are also some of the vulnerabilities are found in this project such as

Password Transmitted Over HTTP, Cross-site Scripting, Cookie Not Marked As HttpOnly,

Internal Path Leakage. The main purpose of this paper was to checking for vulnerabilities of web

applications [20].

In November 2014, Zoran ĐURIĆ [5] had proposed a simulation-based dynamic analysis approach

to scan web applications and the approach was performed as a black-box testing approach. The

process was divided into five phases. The first phase was to web crawling. The crawling was

configured that went beyond the login pages and explored all the pages of a web application. This

will extract all the entry points and parse all the links to collect all the anchor parameters. If the

authorization stops the crawling then phase two will be started to get some input. Phase two is the

point of entry detection and extraction of input of the web application. Then the constraints are

collected and the input to get the entry is done. All the constraints are not supported in all kinds of

web browsers. To avoid this situation, HTTP requests are sent to web applications. In phase three,

the testing had been implemented. The WAPTT used all the information of the entry points to

19

generate valid HTTP requests for the web application that is to be tested. The WAPTT tool will

check for SQL Injection attack using different types of queries such as Logically Incorrect Queries,

Union Queries, PiggyBacked Queries and alco tautologies, inference attack to SQL server and

detection of second-order SQL injection. The tool will also check for cross-site scripting attack

(XSS parameter attack) and Buffer overflow attack. In phase 4, the analysis will be done. In this

part, the tool will analyze all the HTTP response that is received by it and search for vulnerabilities.

If no error status code is found after SQL injection checking, then the scanned web application can

be marked as safe. If the error status exceeds more than 500 then the web application can be said

as vulnerable enough to attack. The detection of XSS detection and Buffer Overflow is also done

by checking the input validation and response from the server respectively. In phase five, the report

will be generated automatically. The WAPTT tool was developed by using JAVA. A semi-

automated web crawler was used because an automated crawler does not fulfill all the parsing all

the web pages in the selected domain [5].

In 2015, Jai Narayan Goel, BM Mehtre made a plan to develop an efficient vulnerability

assessment and penetration testing tool. They planned a life cycle of assessment and testing. They

had chosen some techniques such as static analysis, automated testing, manual testing, fuzzing,

black box testing, grey box testing, white box testing, etc. to check the vulnerabilities of a web

application. Manual testing indicates that no tool is needed for the assessment of any web

application scanning. The automated indicates that there should be tools for scanning and testing

the web application. Fuzzing is the technique to input invalid syntax and value to crash the system

of web applications. The black box testing is run from the outside network to the internal network.

So, the tester does not need to worry about knowledge. In grey box testing, the tester may have

some knowledge about the network architecture. In white-box testing, the tester has proper

knowledge about all the systems and the network architecture. Then they have chosen penetration

testing. But they did not propose any model in the conclusion rather than describing the necessity

of vulnerability testing and penetration testing for cybersecurity [21].

20

In 2018, Muhammet Baykara in the International Journal of Computer Science and Mobile

computing has analyzed some web application vulnerabilities and then scanning those

vulnerabilities by different tools. Netsparker is a tool for scanning a web application. This tool is

fully supported by AJAX, HTML5, and JavaScript-based web applications. It has tow versions

and they are desktop and cloud. It is a built-in tool for web application scanning. The great

disadvantage of this tool is that it has a fee of $5000 per year to license. Then the tool Acunetix is

used. This is a scanning tool and controls the websites written in HTML and JavaScript. In this

tool, the SDLC (software development lifecycle) is included that helps to integrate with the bug

track system or project management. It also includes founded reports. It is very helpful to detect

SQL injection and XSS vulnerabilities. WordPress vulnerabilities can be also found by using

Acunetix. It has a web-based version. Vega is another free and open-source web application

security analyzer tool. It is written in JAVA. It applies a blocker proxy to debug. The attacking

module is written in JavaScript. Besides OWASP ZAP and Wapiti are included here. These are

some tools to analyze web applications [3].

In all the segments, the researchers have talked about the web application security vulnerability

analysis. There are very few works in developing a tool. most of the reports contain the basic idea

of online based web application vulnerability scanning tools. These tools are very different from

each other. Sometimes there is no kind of free version tool. The tools may attempt some

unauthorized access to any kind of web application. The 'D-tect' tool helps to find the most recent

eight web application attacks.

21

Chapter 4

INTERNAL ARCHITECTURE:

Before talking about the code, we must take look at the file that we have in our project root

directory.

Figure 4. 1: root-directory

The above figure is showing us the orientation of the files that we have in our project. These four

scripts and two folders in the root directory. The first folder is my editor’s configuration. Then

there is the ‘detectors’ folder. It does contain some important files. We will talk about that later.

Then our main function ‘d-tect.py’. Then ‘moduleBS.py’, this function plays a very important role

in our project. This Script is only for the beautiful soup module. We will talk in detail about them

in the later section of the project. Then there is the ‘moduleBS.pyc’ which is the binary executable

file for the modules script. Then there is the readme.md which is the default web interface

documentation of our project. Here only the basic function is mentioned. Now let’s jump into the

coding part.

4.1 detectors Folder

Here we can see here we have in total 12 files but only six of them are main scripts and the other

Figure 4. 2: detector Folder

22

6 files are the binary executable files of the main script. The first one is __init__.py. This makes

the scripts of the entire project available to all other scripts.

Figure 4. 3: modules

For example, we can import ‘moduleBS’ script as a module in our main script ‘d-tect.py’. Which

is shown in figure 4.3.

And the all other scripts are like ansi.py, ansiwin32.py, win32.py, winterm.py are mainly used for

conversion of the data. As this is a web-application security testing tool so it will need a lot of

scrapping and conversion. That’s why here we have used a python framework.

A framework is a collection of packages or module that helps to write reusable codes.

Here we have used a web-based framework. A web-based framework is a collection of packages

or modules that developers to write applications or services without having to handle such low-

level details as protocols, sockets or process/thread management.

Here we have used a framework named pyLons. It is an open-source web-based framework that

mainly focuses on the rapid development of applications. This framework is mainly designed for

incorporating some of the properties and best elements of popular languages such as Ruby, Perl,

and Python [22].

Special features of cubic-web framework include

· URL Dispatch

· Routes

· Text-based templating

· URL mapping based on routes configuration via Web-Helpers

· HTML form generation and validity

23

· HTTP request handler

To use this framework first, we had to install it. As it is a pip module so we have used ‘pip install

pylons’ for installing the framework. After executing the command, the detectors folder was

automatically created to maintain the application or project.

This was all about the main architecture of the project now let’s dig into the codes.

4.2 Code Description

The coding part will be described in two main sections. One section is for the d-tect.py script and

another section is for the moduleBS.py script.

d-tect.py is mainly used for doing the scan or using any other payloads where the moduleBS.py

file is mainly used for scrapping.

4.2.1 d-tect.py

This is the main function of our project. While running we use python command and the file’s

name to run or launch this app.

Here is a table showing used modules in this project.

 Module’s Name Use

Re Making regular expression of certain tags for

further development

urllib For handling the URL library

Os For OS commands

Socket Connectivity

Sys For using system

Module BS web scrapping

Urlparse Parsing web url

Detectors For using and encoding different colors

Table 3: Modules

These are the main modules that are making this app functional. In this script there are mainly 13

functions written[23]. Now let’s see and know about the functions.

24

Figure 4. 4: usage of ‘reset’

In all over the code in the formatting commands of the URLs we have used ‘reset’,

‘boldwhite’ etc. keywords. This might confuse the reader.

These are the color and format attribute that was made before start writing any functions

Figure 4. 5: color Attributes

4.2.2 d-tect.py: Function dtect()

Figure 4. 6: Authors

25

This function contains nothing but the print functions of the code through printing the statement

we showing the owners of this project, name, and version as this is our first finished project so we

have declared this as version one.

4.2.3 d-tect.py: Function menu ()

Figure 4. 7: Menu

26

This is the menu function. Here we are printing or showing the user the number of options he or

she might get from this app. Before starting any function, we have created switches and set

Figure 4. 8: Switches

them in ‘off’ condition like shown in figure 4.4. In this function, we are taking input from the user

and with the selection number, we are setting the switch to on mode. With one of condition seven

elif condition and one else condition. In the else condition we have set a print request for incorrect

input and called the menu function again which will start the app from the beginning again.

For example, if anyone selects option ‘1’ then it will start the word-press enumerator then in the

background this app will start scrapping the given URL and will start to evaluate that scrap. We

will see the proper function in the later segment of this paper [24].

27

4.2.4 d-tect.py: Function sock(i,secrectswitch=0)

Figure 4. 9: Socket

In this function, we are passing two arguments one is the indicator and another one is a variable

which value is initially set to 0. We are doing this so for using the output of the given code below.

def sock(i,secretswitch=0):

 secret = secretswitch

 global data,page,sourcecode

 if redirect == 1:

 data = host+i

 else:

 data = host.strip("/")+'/'+i

It’s a string type variable. [several data types of python: ref 4.4]

28

Now in the secret variable, we have the secret-switch (still null at the beginning after writing the

whole code it will only contain the above-written code). In the next line there three global variables

which I need as the scrapped data.

In the first, if condition “redirect == 1” means the URL is working. Then the URL will be placed

in the data variable added with our indicator which was null till now.

In the else condition we are stripping the URL with the breakpoint set to ‘/’. And by manually

adding ‘/’ and ‘ I ’ with it.

Either way, we are getting the data in the page variable. The content of the URL is temporarily

opened for reading.

In the source-code variable, we have read the data temporarily. That means if we print this variable

twice then it will print the content first time and It will print null for the second print.

Now we must have some data so our secret variable won’t be null. After checking it the function

will return the source code which is our scrapped website.

29

4.2.5 d-tect.py: Function cloudflare()

Figure 4. 10: Cloud-Flare

Cloud flare is a web-application security company [ref: 4.4]. In this function, we are searching, if

the website is blocked by them or not. Like the above function, we are just reading the file and

30

checking if cloud-flare is in the title to block the IP or not. If it’s there then we are giving a print

statement and calling the again()[chapter:4 – 4.2.] function [25].

4.2.6 d-tect.py: Function alive()

Figure 4. 11: Alive

This function has created to check if the URL or the site is alive or not. We writing the next block

of code in try-except block cause sometimes there might be an error.

The possible output of the above code is shown below in figure 4.5. First, there are three global

variable pages, split host and IP. In data, we have the host address and in the page variable, we

have the opened page. And by page.read we are putting them in the source variable. In the split

host, we are putting the host address by splitting them and the scale is ‘:’ and “//” sign. In the IP

variable, we are getting the IP of the host using a socket.

Figure 4. 12: alive function output

31

If all of the above requirements are complete then the program will give two statements one will

give the green flag which means the site is up. In the next print statement, the program is showing

that after being connected to the server it will first check if the site is blocked by cloud-flare it will

complete the task by calling the ‘cloudflare()[4.2.2]’ function. And also there is another function

call for redirecting check [26].

4.2.7 d-tect.py: Function responseheadercheck()

Figure 4. 13: Response-Header

This is one of the big functions of the program. It’s mainly for checking the responsive headers

that we getting by scrapping the given URL. First, we are printing an empty string to differentiate

this function from the other functions. First, we have a self-made dictionary. Which contains some

keywords. These are the names of some serious files location. If we are able to find any of these

files then this website might be vulnerable. Cause these files contains some serious information

that might lead to click-jacking or cross-site scripting.

32

Then there 3 empty string and a handler ‘cj’ which value is set to 0. In the for loop we are iterating

through the page [global variable created in 4.2.2] headers if there are any lower cases in I then it

will pass them. Then if I find anything named server then it will reformat it into string in structure

variable. Then it will save them in the empty list ‘headersfound’ then in the next line we are putting

the server and appended them in the ‘interesting’ list. Here we are not only finding the vulnerability

we are also specifying them for making a report. Which makes this app really very special. In the

other two else-if conditions, on the first one, we are doing the same thing as before just we are

doing it for x-frame this time. In the other else if condition we are just searching for x-frame-

options if any is available then we will set the value cj=1. If none of them is found then there is

the else condition in which we are just reformatting the URL and putting the reformatted URL in

the ‘headersfound’ variable.

At the end of the loop, there is an if condition it is checking if ‘cj=0’ then there are no x-frame in

this web-application which is a weakness, so we are reporting that to a user and also providing a

link where he or she can know more about this vulnerability.

After all that, in the end of the function we are just printing the interesting headers that we have

founded.

4.2.8 d-tect.py: Function parameterarrange(payload)

Figure 4. 14: parameter-arrange

33

This function is for the arrangement of some parameters to use as payload. In the ‘parsedurl’

variable we have the given host and, in the parameters, we are parsing as qsl. ‘qsl’ actually Parse

a query string given as a string argument (data of type application/x-www-form-urlencoded). Data

are returned as a list of names, value pairs [27].

There are two blank lists parameter’s names and parameter’s values. In the next line there is a loop

in which we are searching for ‘m’ in parameters [query]. We are appending first value in the 0

index and the second value is 1st index.

Then in the next loop we searching for ‘n’. While finding this there might throw an error so we are

putting it in a try and except block.

In the ‘payload’ variable we have the index of the parameter-values. And we are returning the

encoded data as a zipped dictionary. In the ‘except’ block we are just passing them.

34

4.2.9 d-tect.py: Function SQLIscan(site)

Figure 4. 15: SQL-Scan

This function is another big-function of our project. This part finds out whether the targeted

website is vulnerable to SQL-injection or not. This function does this by scraping and using

payloads.

First there is a list named vuln, in this, we will have the faulty parameters which we will find after

scrapping the website. And we will use the list for further use. Then there are two tuples named

payloads and errors.

These will the tools that we will need to make this function work. First, we have a path variable in

which we getting three things ‘SCHEME’, ‘ NETLOC’, ‘PATH’.

35

Scheme:- it provides the information of the URL scheme. The scheme can be anything either

HTTP or https. If it’s on HTTP that means it’s on port number 80. And if it’s on https that means

the port number 443.

Netloc:- it will give the information about the network location.

PATH:- Hierarchical path is the topology information.

We are storing all of these in our path variable. Now in the next line of codes, we are going to use

this information against this target.

In the ‘parsedurl’ we are opening the host. Now there is an interesting point here. In the

‘parameters’ variable, we are using ‘parse_qsl’.

It passes a URL as text and takes a return in a dictionary format. We are setting the blank values

as True because if don’t do that then qsl will automatically add a ‘+’ sign for blank values like

space.

Then we have two empty lists. Then using a for-loop we are appending values to that two lists in

the first list we have the parameter’s name and in the second list, we have parameter’s value.

In for loop, we are iterating through the parameters variable. In this variable we have the dictionary

of the URL. At first, we have a counter named found and the value is set to 0. Then we are again

iterating through our payloads. Then in the ‘modified’ URL, we are uploading the vulnerable

payload or the SQL-injection command. If it’s vulnerable or not. Then in the source variable, we

are reading the updated URL.

This process might occur an error so we are putting this whole code in a try-except for preventing

the app from being stopped.

In for loop we are finding the vulnerability if we are able to find any then we will set the value of

the found counter to 1.

Now if the found counter has the value of 1 then the website is vulnerable and we are printing the

vulnerable parameters in the ‘vuln’ list. If the vuln parameter has a value of 0 then it means the

website is not vulnerable. So we are printing in the else condition “Not Vulnerable”.

36

4.2.10 d-tect.py: Function XSSscan(site)

In this section we are checking if the given website is vulnerable to XSS or cross-site-scripting.

This function is written in the same way as the previous function (sql-scan). Here we have a

different payload in the payload’s variable. We are scrapping the given website using the same

method parse qsl. Then in the first loop, we are appending the parameter in the name list and the

values in the values list.

In the next loop, we are adding the payloads with the scrap in the payload variable and using the

u variable to upload the payloads. In the source, we have the read file of the URL. And now we

are using Beautiful-soup. Because we are searching for cross-site scripting vulnerability this

vulnerability could be found in the code of the website like it could be hidden in any HTML tag

or a JavaScript function. So, we are now using beautiful soup so that we can find any special

attribute or tag or a script.

37

Figure 4. 16: XSS scan

Now in if condition we searching for the payloads. Here we are using str for this purpose because

it will create a new string object from the given object, if any encoding or error is specified then it

will expose the data buffer that will decode using the given encoding and error handler and here

in our case we have specified the error handler and encoding as ‘u’ and ‘payload’ variable.

In if condition we are checking the HTML content. And if it can find any vulnerability then it will

set the found counter as 1.

38

In the script we are searching for all the script tag because it contains the JavaScript codes. Now

we are checking them and searching for a XSS vulnerability. If there is any then it will also show

the vulnerable script from HTML or JS.

In chapter two [2.3.6] section we have already declared the theory of cross-site scripting. The main

types of cross-site-scripting are stored and reflected. In our project, we have used reflected

scripting as payloads.

Here our main target is to find out any vulnerability not to hack the site. Reflected scripting does

not change anything permanently. It will start a session and will give the attacker a new view. And

this view will contain some information. The items of the information will be specified in the given

payload.

Here in our project we have used this given command for our XSS scan

 '3':'d4rk();"\'\\/}{d4rk',

'2':'d4rk</script><script>alert(1)</script>d4rk',

'1':'<d4rk>'

In this payload we are trying to show a message on the vulnerable page. Which is temporary. It

will only appear after executing the code. ‘d4kr’ is a simple string type. Its job is to call upon a

sensitive file.

This is an app, if it stops running then it will create a big problem. So, there is a bunch of if-else

condition for handling that.

The whole code is in a try-except block for ignoring the errors[28].

39

4.2.11 d-tect.py: Function portscanner()

Figure 4. 17: Port Scan-One

In this function, we will scan all the ports that are connected to the targeted host.

First, there is a print statement that will show the user how to conduct the scanning using this app.

Then there are three variables ‘was multiple’ ‘was range’ ‘was one’.

The first one is for multiple users and the second one is for scanning in a range and the last one is

for scanning one single port.

40

Here the proportion keyword is used as the user input. If there is any ‘,’ comma that means the

user has given multiple port numbers for scanning. Then in if the condition it will split the given

input by comma and store that in the ‘multiple-port’ variable. Now it will check if it’s a valid port

number or not by checking if the given input is stored as a string object whether it has a digit or

not. We are doing the same for all other scans. Like all ports or single port or a given range of

ports.

Here the user has the option to select all the ports for scanning. Normally in this part, he or she

will only be able to scan ports starting from 20 and ends in 5000 for more than 5000 ports the user

will have to manually enter the range or the port number only. In a computer system normally

there 65535 ports. But we are conducting this range of port because ports before 20 numbers are

normally occupied by various services. They normally don’t have any vulnerability.

Ports are the main equipment that computers used for establishing a connection with any other

host. Any port can be vulnerable or all 65535 ports can be secure. But on 21,22,23,25 or 53 etc.

ports can be vulnerable. All these ports are used for the establishment of a remote connection.

There can be many types of vulnerability on a port. Like broken authentication or open port or any

already existed backdoor.

How a port is kept open?

import socket

my_sock = socket.socket(socket.AF_INET,socket.SOCK_STREAM)

my_sock.connect(('www.py4inf.com',80))

my_sock.send(b'GET /code/romeo.txt HTTP/1.0\r\nHost: www.py4inf.com\r\n\r\n')

while True:

 data = my_sock.recv(1024)

 if len(data)<1:

 break

 print(data)

my_sock.close()

41

The codes given in here is a simple code for downloading an text from a web site. We have

established the connection using sockets. At the end of the code there is a command for closing

the connection. It means if any connection is open then it needs to be closed after finishing the job.

Just stop using the service without closing keeps the port opened. This can make it a vulnerable

point for an attacker to attack.

Now after checking the validity of the given input we are trying to connect to each of the port by

using socket. In the ‘portconnect’ variable we have the connected socket.

Here we have only checked the open ports.

Now in response, we have ‘connect_ex’ it mainly connects to a remote address and then wrap the

connection in a ‘SSL’ shell for secure connection, if app can make connection with any of the

given port number then it will increase the flag ‘found’ value 1, in the same process it will iterate

through all the given port numbers and will show the output using a ‘print’ statement.

42

4.2.12 d-tect.py: Function subdomainscanner()

Figure 4. 18: Subdomain

Here we have a dictionary of words which contains name of the possible subdomains. Examples

"mail","localhost","blog","forum","0","01","02","03","1","10","11","12","13","14","15","16","1

7","18","19","2","20","3","3com","4","5","6","7","8","9","ILMI","a","a.auth-

ns","a01","a02","a1","a2","abc","about","ac","academico","acceso","access","accounting","acco

unts","acid","activestat","ad","adam","adkit","admin","administracion","administrador","adminis

trator","administrators","admins","ads","adserver","adsl","ae","af","affiliate","affiliates","afiliad

os","ag","agenda","agent","ai","aix","ajax","ak","akamai","al","alabama","alaska","albuquerque"

,"alerts","alpha","alterwind","am","amarillo","americas","an","anaheim","analyzer","announce",

"announcements","antivirus","ao","ap","apache","apollo","app","app01","app1","apple","applica

tion","applications","apps","appserver","aq","ar","archie","arcsight","argentina","arizona","arkan

sas","arlington","as","as400","asia","asterix","at","athena","atlanta","atlas","att","au","auction"

43

The progress flag is set to 0. Iterating i[url] through with the word list if it can find any match then

at first. Then it will spilt the host and resolved it into ip addresses.

After just resolving the subdomain and showing the IP address to the host our program will move

on and start searching for the next sub-domain.

These were the main scanning functions that were used for making the scanning shell app work.

There are some other functions used for maintaining the whole working process.

Like word-press emulator, sensitive file exposer, re-direction check, etc. functions work with the

output of the main function.

In the SQL-injection function, we have already scrapped a given URL and processed a lot for

further use. Like while iterating through the URL for SQL-injection vulnerability we have already

scrapped and read through specific.

But in python, all scrapping is done by using ‘.read()’ can only be written once to resolve this

problem after printing the final result we have returned the final output that means the processed

data. And they all are global variables so we can call them anywhere we want.

Most of the vulnerabilities of web-applications can be found by scrapping them.

There is one another main Module ‘moduleBS.py’. In this function, we have mainly used the

Beautiful-soup module and regular expression [re] module. In this function, we scrapped the

website on some special patters. Like In an HTML document their specific subdomain links

wrapped under ‘<href> … </href>’ tag. Sometimes they are encoded and sometimes they are not.

A real-life example of such a subdomain is a forgotten password URL.

It may conation some special password or user session details. If we can get that information using

our app then an attacker can create a fake session with is skills. So we have searched for them by

converting them into strings and comparing them with certain other functions.

There are lots of static data used in dictionaries of several functions. This might make this app

somewhat limited but hacking without data or information is impossible.

The moduleBS.py module can’t be described due to privacy

44

4.3 Result:

Figure 4. 19: Scan – 1

Here we are checking the header of the given website ‘itsecgames.com’. This website is lab

equipment for testing.

First, the URL is resolved into the IP address. From the previous theory [4.2.4] we already know

about the ‘cloudflare’ part. These functions are found in the headers.

It also found two different servers connected to the given URL. And also detected the word-press.

In which the x-frame header is missing. Which means the header files are not encrypted.

This might make the website vulnerable to click-jacking.

Figure 4. 20: Scan- 2

45

Now we checking if there are any sensitive files in the same URL. This time the app found two

different sensitive files one if robost.txt and crossdomain.xml both of the files have serious

importance. The first one contains configuration and the second one can be used to upload or delete

any file from this domain using a third-party client like ‘FileZilla’

Figure 4. 21: Scan – 2

These are some other sensitive files.

.htaccess ➔ file is used to remotely connect any client with the server.

Clientaccesspolicy.xml ➔ Here we can change and modify the client access limitations.

Info.php ➔ it can be used to break the authentication policy.

Besides log and change log have a list of changes that were made throughout the time for this

website.

46

Figure 4. 22: Scan – 3

Here we have checked ‘www.cineplex.com’ as this is a static website so it won’t redirect. So, there

are no subdomains still we are searching for subdomains 1904 time.

Figure 4. 23: Scan-4

47

Figure 4. 24: Scan-4

As discussed in the theory we are scanning 5000 ports. Here 22 no port is open which is the ssh

port or a secure shell for remote connection. The website is ‘www.owasp.org’ which is also a lab

tool.

Figure 4. 25: Scan – 5

48

This another word-press scan here the URL is ‘www.ewubd.edu’ on this website, there is cloud

flare which is blocking access and there are no word-press themes and this site is not vulnerable

but the important information form this scan is info about the server. This URL is running on Linux

based apache server.

Figure 4. 26: Scan- 6

Here we are doing another word-press scan but now we are searching for the backups of word-

press and server information. Here the URL in the link tag will give us the chance to grab the

word-press backup.

Figure 4. 27: Scan – 7

49

Here we’re checking itsecgames.com for SQL-injection. As this website is a static website with

now database to inject so it’s not vulnerable.

But sometimes some websites with SQL-injection vulnerability can’t be detected using this app.

The limitations are the payloads.

50

Chapter 5

Conclusion and Further Development

The web application has become very popular at present. Anyone can communicate and exchange

information with each other within a short moment from any corner of the world. With the

advancement of web application popularity, the chances of web applications have become a target

for getting information. Vulnerabilities help the attacker to gather information and exploit them.

Many attempts have been taken to scan web applications and finding vulnerabilities. The tool ‘D-

tect' can find the eight most serious web application attacks. It can also gather so much information

about any kind of web application. This tool can be used for reconnaissance to any particular web

application. That means many kinds of information such as ports, database versions, WordPress

version, etc. can be easily known by scanning. The tool will gather information about the database

and check whether it is vulnerable to SQL injection. The tool will detect any kind of WordPress

in the web application. This tool will check the WordPress username enumerator. The WordPress

backup grabber vulnerability can be checked by the tool. If there exist any kind of sensitive files

that can be also detected by using the tool. web applications may have subdomains. The tool will

check the subdomain for a particular web application. Ports will be analyzed so that the vulnerable

port address can be detected. The tool will also check for cross-site scripting vulnerabilities. If the

cross-site scripting vulnerability is found, then the tool will show the corresponding results.

So, using the ‘D-tect' tool will help us to find some most dangerous and harmful web application

vulnerabilities. Information is a very serious concern in the present situation. If any kind of

vulnerability is found, the host of the web application can correct it and establish a better security

structure for them and the user of the web application. It will make the web application better and

the information will be kept safe.

The tool 'D-tect' can detect the eight most web application vulnerabilities. It is good for the security

implementation of any kind of web application. The tool is developed in python language. Initially,

the tool analyzes only eight vulnerabilities. Some features can be added to this tool for further

development. The tool can be integrated into a website so that users can easily check their web

application security issues. This tool is a developer-friendly tool. Because many developers

51

develop a different kind of web application. Some use WordPress for designing the framework.

Ajax, DotNet, JavaScript, etc. are used for designing and logical implementation. So, loopholes

can remain beneath the coding. If a developer can get the tool and check their developed web

application. Many dictionary variables are written in the code. These dictionary variables help us

to define parameters that we want to check. This also helps to implement the module we need for

a particular operation on the instant. More dictionaries can be added for port scanning. Other ports

can be scanned. More web application vulnerability testing such as security misconfiguration,

insecure deserialization, using components with known variables, etc. The tool can be integrated

into the mobile version by using APIs. The 'D-tect' tool is designed in python version 2.7. the tool

can be upgraded in python 3.7 version in the future. The prevention of different web application

vulnerabilities can be added to the tool in the future. This will help to make a secure platform for

web application developers and users. It will prevent information theft and reduce the probability

of using information for wrong purposes.

52

Bibliography:

[1] S. Webapp, “Web app development: the six different types of web apps.” [Online].

Available: https://en.yeeply.com/blog/6-different-kinds-web-app-development/.

[Accessed: 22-Dec-2019].

[2] R. P. Adhyaru, “Techniques for Attacking Web Application Security,” Int. J. Inf. Sci. Tech.,

vol. 6, no. 1/2, pp. 45–52, 2016.

[3] M. Baykara, “Investigation and Comparison of Web Application Vulnerabilities Test

Tools,” vol. 7, no. 12, pp. 197–212, 2018.

[4] C. Watson et al., “Advances in Electrical and Computer Engineering,” Adv. Electr. Comput.

Eng., vol. الحا العدد , no. 1, pp. 93–102, 2018.

[5] Z. Durić, “WAPTT - web application penetration testing tool,” Adv. Electr. Comput. Eng.,

vol. 14, no. 1, pp. 93–102, 2014.

[6] A. Hasan and D. Meva, “Special Issue based on proceedings of 4TH International

Conference on Cyber Security (ICCS) 2018 Web Application Safety by Penetration

Testing,” pp. 159–163, 2018.

[7] Wordpress, “What is WordPress? | WordPress 101 Tutorials.” [Online]. Available:

https://ithemes.com/tutorials/what-is-wordpress/. [Accessed: 22-Dec-2019].

[8] Subdomain, “What are Subdomains? (Definition and Examples).” [Online]. Available:

https://www.wpbeginner.com/glossary/subdomain/. [Accessed: 22-Dec-2019].

[9] W. Vulnerability, “Online WordPress Security Scan for Vulnerabilities | WP Sec.” [Online].

Available: https://wpsec.com/. [Accessed: 22-Dec-2019].

[10] Harpreet Passi, “OWASP - Top 10 Vulnerabilities in web applications (updated for 2018).”

[Online]. Available: https://www.greycampus.com/blog/information-security/owasp-top-

vulnerabilities-in-web-applications. [Accessed: 23-Dec-2019].

[11] 15 vulnerabile Site, “15 Vulnerable Sites To (Legally) Practice Your Hacking Skills.”

[Online]. Available: https://dst.com.ng/15-vulnerable-sites-legally-practice-hacking-skills/.

53

[Accessed: 25-Dec-2019].

[12] Cure 53, “GitHub - cure53/HTTPLeaks: HTTPLeaks - All possible ways, a website can

leak HTTP requests.” [Online]. Available: https://github.com/cure53/HTTPLeaks.

[Accessed: 25-Dec-2019].

[13] Game of Hacks | Checkmarx, “Game of Hacks | Checkmarx.” [Online]. Available:

http://www.gameofhacks.com/. [Accessed: 25-Dec-2019].

[14] HollyGraceful, “Hacking Web Applications: — GracefulSecurity.” [Online]. Available:

https://www.gracefulsecurity.com/hacking-web-applications/. [Accessed: 25-Dec-2019].

[15] Acunetix, “XSS Vulnerability Scanning | Acunetix.” [Online]. Available:

https://www.acunetix.com/vulnerability-scanner/xss-vulnerability-scanning/. [Accessed:

25-Dec-2019].

[16] Acunetix SQL injection, “What is SQL Injection (SQLi) and How to Prevent It.” [Online].

Available: https://www.acunetix.com/websitesecurity/sql-injection/. [Accessed: 25-Dec-

2019].

[17] Positive Technologies, “Web Application Vulnerabilities: Statistics for 2018.” [Online].

Available: https://www.ptsecurity.com/ww-en/analytics/web-application-vulnerabilities-

statistics-2019/. [Accessed: 25-Dec-2019].

[18] G. Erdogan, “Security Testing of Web Based Applications,” no. July, 2009.

[19] F. van der Loo, “Comparison of penetration testing tools for web applications,” p. 50, 2011.

[20] C. George, “Web Application Security Web Application Security 101,” no. January, pp. 1–

10, 2010.

[21] J. N. Goel and B. M. Mehtre, “Vulnerability Assessment & Penetration Testing as a Cyber

Defence Technology,” Procedia Comput. Sci., vol. 57, pp. 710–715, 2015.

[22] MindMajix, “Top 20 Python Frameworks For Web Development [Updated 2020].”

[Online]. Available: https://mindmajix.com/top-20-python-frameworks-list. [Accessed: 28-

Dec-2019].

[23] pypi, “dash · PyPI.” [Online]. Available: https://pypi.org/project/dash/. [Accessed: 28-Dec-

54

2019].

[24] TutorialsTeacher.com, “Python Data Types.” [Online]. Available:

https://www.tutorialsteacher.com/python/python-data-types. [Accessed: 29-Dec-2019].

[25] Cloudfare Inc, “Cloudflare - The Web Performance & Security Company | Cloudflare.”

[Online]. Available: https://www.cloudflare.com/. [Accessed: 29-Dec-2019].

[26] Odino, “Secure your web application with these HTTP headers.” [Online]. Available:

https://odino.org/secure-your-web-application-with-these-http-headers/. [Accessed: 29-

Dec-2019].

[27] Python org, “20.16. urlparse — Parse URLs into components — Python 2.7.17

documentation.” [Online]. Available: https://docs.python.org/2/library/urlparse.html.

[Accessed: 29-Dec-2019].

[28] Brute XSS, “XSS 101 - Brute XSS.” [Online]. Available:

https://brutelogic.com.br/blog/xss101/. [Accessed: 29-Dec-2019].

55

Appendix:

import re,urllib,os,socket,sys

from pip._vendor.distlib.compat import raw_input

from moduleBS import BeautifulSoup
from urlparse import urlparse
from dtectcolors import Style,Fore,Back,init
init()
if os.name == 'nt':
 os.system('cls')
else:
 os.system('clear')

d4rk = 0
dr1 = "D4rk "

-- Colors Start --
boldwhite = Style.BRIGHT+Fore.WHITE
boldgrey = Style.DIM+Fore.WHITE
reset = Style.RESET_ALL
green = Style.BRIGHT+Fore.GREEN
lightgreen = Fore.GREEN
red = Fore.RED
boldred = Style.BRIGHT+Fore.RED
-- Colors End --

-- Switches Start --
wpenumerator = "off"
filedetector = "off"
headercheck = "on"
subdomainscan = "off"
portscan = "off"
wpscan = "off"
xssscanner = "off"
wpbackupscan = "off"
sqliscanner = "off"
-- Swiches End --

def dtect():
 print(" ____ _____ _____ ____ _____ ")
 print(" | _ \ |_ _| ____/ ___|_ _|")
 print(" | | | |__| | | _|| | | | ")
 print(" | |_| |__| | | |__| |___ | | ")
 print(" |____/ |_| |_________| |_| v1.0")
 print("")
 print(" D-TECT - Pentest the Modern Web")
 print(" Author: Ashikin Talha - (https://github.com/Ashikwome)")

56

 print(" Author: Ayan Chowdhury")
 print("")
 def menu():
 global
filedetector,wpenumerator,subdomainscan,portscan,wpscan,xssscanner,wpbackupscan,sqlis
canner
 print(" -- "+boldwhite+"Menu"+reset+" -- \n \n 1. "+boldwhite+"WordPress
Username Enumerator"+reset+" \n 2. "+boldwhite+"Sensitive File Detector"+reset+"
\n 3. "+boldwhite+"Sub-Domain Scanner"+reset+"\n 4. "+boldwhite+"Port
Scanner"+reset+" \n 5. "+boldwhite+"Wordpress Scanner\n"+reset+" 6.
"+boldwhite+"Cross-Site Scripting [XSS] Scanner\n"+reset+" 7.
"+boldwhite+"Wordpress Backup Grabber\n"+reset+" 8. "+boldwhite+"SQL Injection [
SQLI] Scanner\n"+reset)
 option = raw_input("[+] Select Option\n > ")
 if option == "1":
 wpenumerator = "on"
 elif option == "2":
 filedetector = "on"
 elif option == "3":
 subdomainscan = "on"
 elif option == "4":
 portscan = "on"
 elif option == "5":
 wpscan = "on"
 elif option == "6":
 xssscanner = "on"
 elif option == "7":
 wpbackupscan = "on"
 elif option == "8":
 sqliscanner = "on"
 else:
 print("[+] Incorrect Option selected")
 menu()

 def sock(i,secretswitch=0):
 secret = secretswitch
 global data,page,sourcecode
 if redirect == 1:
 data = host+i
 else:
 data = host.strip("/")+'/'+i
 page = urllib.urlopen(data)
 sourcecode = page.read()
 if secret == "1":
 return sourcecode
 def cloudflare():
 data = host #+'/'
 page = urllib.urlopen(data)
 pagesource = page.read()
 if "used CloudFlare to restrict access</title>" in pagesource:
 print("[!] Cloudflare blocked the IP")
 again()
 def alive():
 try:
 global page,splithost,ip

57

 data = host#+'/'
 page = urllib.urlopen(data)
 source = page.read()
 splithost = str(data.split("://")[1].split("/")[0])
 ip = socket.gethostbyname(splithost)
 print("[i] "+green+"Site is up!"+reset)
 print(" \n[+] Target Info:\n | URL: "+boldwhite+"%s"+reset+"\n | IP:
"+boldwhite+"%s"+reset+"\n ")%(data,ip)
 print("[+] Checking if any Cloudflare is blocking access...")
 cloudflare()
 redirectcheck()
 except(IOError):
 print("[!] "+red+"Error connecting to site! Site maybe down."+reset)
 again()
 def responseheadercheck():
 print('')
 headers = ['set-cookie','x-cache','Location','Date','Content-
Type','Content-Length','Connection','Etag','Expires','Last-
Modified','Pragma','Vary','Cache-Control','X-Pingback','Accept-Ranges']
 headersfound = []
 interesting = []
 caution = []
 cj = 0
 for i in page.headers:
 if i.lower() in str(headers).lower():
 pass
 elif i == "server":
 structure = str(i)+" : "+str(page.headers[i])
 headersfound.append(structure)
 structure = "Server : "+boldwhite+str(page.headers[i])+reset
 interesting.append(structure)
 elif i == "x-powered-by":
 structure = str(i)+" : "+str(page.headers[i])
 headersfound.append(structure)
 structure = "Powered by: "+boldwhite+str(page.headers[i])+reset
 interesting.append(structure)
 elif i == "x-frame-options":
 cj = 1
 pass
 else:
 structure = str(i)+" : "+str(page.headers[i])
 headersfound.append(structure)
 if cj == 0:
 caution.append("[!]"+red+" X-Frame-Options header Missing\n"+reset+"[!]
"+red+"Page might be vulnerable to "+boldred+"Click Jacking\n"+reset+"[!]
"+boldred+page.geturl()+reset+"\n[i] About ClickJacking: [
"+green+"https://www.owasp.org/index.php/Clickjacking"+reset+"]")
 print("[+] Interesting Headers Found:")
 for i in headersfound:
 print(" | %s")%(i)
 if len(interesting) != 0:
 print("\n[i] Information from Headers:")
 for i in interesting:
 print(" | %s")%i
 print('')

58

 if cj == 0:
 print(caution[0])
 print('')
 def parameterarrange(payload):
 parsedurl = urlparse.urlparse(host)
 parameters = urlparse.parse_qsl(parsedurl.query, keep_blank_values=True)
 parameternames = []
 parametervalues = []

 for m in parameters:
 parameternames.append(m[0])
 parametervalues.append(m[1])

 for n in parameters:
 try:
 print("Checking '%s' parameter")%n[0]
 index = parameternames.index(n[0])
 original = parametervalues[index]
 parametervalues[index] = payload
 return urllib.urlencode(dict(zip(parameternames,parametervalues)))
 parametervalues[index] = original
 except(KeyError):
 pass
 def SQLIscan(site):
 print("[+] [SQLI] Scanner Started...\n")
 vuln = []
 payloads = {
 '2':'"',
 '1':'\''
 }
 errors = {
 'MySQL':'You have an error in your SQL syntax;',
 'Oracle':'SQL command not properly ended',
 'MSSQL':'Unclosed quotation mark after the character string',
 'PostgreSQL':'syntax error at or near'
 }
 path =
urlparse.urlparse(site).scheme+"://"+urlparse.urlparse(site).netloc+urlparse.urlparse
(site).path
 parsedurl = urlparse.urlparse(host)
 parameters = urlparse.parse_qsl(parsedurl.query, keep_blank_values=True)
 parameternames = []
 parametervalues = []

 for m in parameters:
 parameternames.append(m[0])
 parametervalues.append(m[1])

 for n in parameters:
 found = 0
 print("[+] Checking '%s' parameter")%n[0]
 try:
 for i in payloads:

59

 pay = payloads[i]
 index = parameternames.index(n[0])
 original = parametervalues[index]
 parametervalues[index] = pay
 modifiedurl =
urllib.urlencode(dict(zip(parameternames,parametervalues)))
 parametervalues[index] = original
 modifiedparams = modifiedurl
 payload = urllib.quote_plus(payloads[i])
 u = urllib.urlopen(path+"?"+modifiedparams)
 source = u.read()
 #print ("[+] Checking HTML Context...")

 for i in errors:
 if errors[i] in source:#htmlcode[0].contents[0]:
 dbfound = " | Back-End Database: "+green+str(i)+reset
 found = 1
 break
 if found != 1:
 break
 except(KeyError):
 pass

 if found == 1:
 print("[!] "+red+"SQL Injection Vulnerability Found!"+reset)
 print (dbfound)
 vuln.append("'"+n[0]+"'")
 found = 0
 if len(vuln) != 0:
 print(" | Vulnerable Parameter/s:"),
 for i in vuln:
 print(i),

 else:
 print("[!] Not Vulnerable")
 def XSSscan(site):
 print("[+] [XSS] Scanner Started...")
 vuln = []
 payloads = {
 '3':'d4rk();"\'\\/}{d4rk',
 '2':'d4rk</script><script>alert(1)</script>d4rk',
 '1':'<d4rk>'
 }
 path =
urlparse.urlparse(site).scheme+"://"+urlparse.urlparse(site).netloc+urlparse.urlparse
(site).path
 parsedurl = urlparse.urlparse(host)
 parameters = urlparse.parse_qsl(parsedurl.query, keep_blank_values=True)
 parameternames = []
 parametervalues = []

 for m in parameters:
 parameternames.append(m[0])
 parametervalues.append(m[1])

60

 for n in parameters:
 found = 0
 print(" | Checking '%s' parameter")%n[0]
 try:
 for i in payloads:
 pay = payloads[i]
 index = parameternames.index(n[0])
 original = parametervalues[index]
 parametervalues[index] = pay
 modifiedurl =
urllib.urlencode(dict(zip(parameternames,parametervalues)))
 parametervalues[index] = original
 modifiedparams = modifiedurl
 payload = urllib.quote_plus(payloads[i])
 u = urllib.urlopen(path+"?"+modifiedparams)
 source = u.read()
 code = BeautifulSoup(source)
 if str(i) == str(1):
 #print ("[+] Checking HTML Context...")
 if payloads[i] in source:#htmlcode[0].contents[0]:
 #print("[+] XSS Vulnerability Found.")
 found = 1
 script = code.findAll('script')
 if str(i) == str(3) or str(i) == str(2):
 #print("[+] Checking JS Context...")
 if str(i) == str(3):
 #JS Context
 for p in range(len(script)):
 try:
 if pay in script[p].contents[0]:
 #print("[+] XSS Vulnerability Found")
 found = 1
 except(IndexError):
 pass
 if str(i) == str(2):
 if payloads['2'] in source:
 # print("[+] XSS Vulnerability Found")
 found = 1
 except(KeyError):
 pass

 if found == 1:
 vuln.append("'"+n[0]+"'")
 found = 0
 if len(vuln) != 0:
 print("[!] "+red+"Vulnerable Parameter/s:"+reset),
 for i in vuln:
 print(boldred+i+reset),
 else:
 print("[!] Not Vulnerable")
 def portscanner():
 print("[i] Syntax : Function")
 print("23,80,120:Scans Specific Ports, e.g,ScansPort23 ,80and120 ")
 print("23-80:Scans a Range of Ports, e.g, Scans Port from 23 to 80")

61

 print("23:Scans a single port, e.g, Scans Port 23")
 print("all:Scans all ports from 20 to 5000")
 print(" ")
 portoption = raw_input("[+] Enter Range or Port:\n > ")
 wasmultiple = 0
 wasrange = 0
 wasone = 0
 if ',' in portoption:
 wasmultiple = 1
 multipleport = portoption.split(',')
 notexpected = 0
 for i in multipleport:
 if not str(i).isdigit():
 print("[!] Incorrect Syntax!")
 notexpected = 1
 if notexpected == 1:
 again()
 totallength = multipleport
 elif '-' in portoption:
 wasrange = 1
 rangeport = portoption.split('-')
 totalrange = range(int(rangeport[0]),int(rangeport[1])+1)
 if len(rangeport) != 2:
 print("[!] Incorrect Syntax!")
 again()
 totallength = totalrange
 elif portoption == 'all':
 totallength = range(20,5000)
 elif portoption.isdigit():
 wasone = 1
 oneport = int(portoption)
 totallength = range(1)
 else:
 print("[+] Incorrect Syntax!")
 again()
 print("[+] Scanning %s Port/s on Target: %s")%(len(totallength),ip)
 ports = 5000
 found = 1
 protocolname = 'tcp'
 progress = 20
 loopcondition = range(20,5000)
 if portoption == 'all':
 loopcondition = range(20,5000)
 ports = 5000
 progress = 20
 elif wasmultiple == 1:
 loopcondition = multipleport
 ports = int(len(multipleport))
 progress = 0 #int(min(multipleport))
 elif wasrange == 1:
 loopcondition = totalrange
 ports = int(rangeport[1])
 progress = int(rangeport[0])-1
 elif wasone == 1:
 onlyport = []

62

 onlyport.append(portoption)
 loopcondition = onlyport
 progress = 0
 ports = 1
 else:
 loopcondition = range(20,5000)
 for i in loopcondition:
 i = int(i)
 progress += 1
 sys.stdout.write("\r[+] Progress %i / %s ..."% (progress,ports))
 sys.stdout.flush()
 portconnect = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 response = portconnect.connect_ex((ip, i))
 if(response == 0) :
 print ('\n | Port: '+boldwhite+'%d'+reset+' \n | Status:
'+green+'OPEN'+reset+'\n | Service: '+boldwhite+'%s'+reset+'\n')%
(i,socket.getservbyport(i, protocolname))
 found += 1
 portconnect.close()
 if found == 1:
 print("\n | "+red+"No Open Ports Found!"+reset)
 def subdomainscanner():

 import sys
 print("\n[+] Subdomain Scanner Start!")
 wordlist =
["mail","localhost","blog","forum","0","01","02","03","1","10","11","12","13","14","1
5","16","17","18","19","2","20","3","3com","4","5","6","7","8","9","ILMI","a","a.auth
-
ns","a01","a02","a1","a2","abc","about","ac","academico","acceso","access","accountin
g","accounts","acid","activestat","ad","adam","adkit","admin","administracion","admin
istrador","administrator","administrators","admins","ads","adserver","adsl","ae","af"
,"affiliate","affiliates","afiliados","ag","agenda","agent","ai","aix","ajax","ak","a
kamai","al","alabama","alaska","albuquerque","alerts","alpha","alterwind","am","amari
llo","americas","an","anaheim","analyzer","announce","announcements","antivirus","ao"
,"ap","apache","apollo","app","app01","app1","apple","application","applications","ap
ps","appserver","aq","ar","archie","arcsight","argentina","arizona","arkansas","arlin
gton","as","as400","asia","asterix","at","athena","atlanta","atlas","att","au","aucti
on","austin","auth","auto","av","aw","ayuda","az","b","b.auth-
ns","b01","b02","b1","b2","b2b","b2c","ba","back","backend","backup","baker","bakersf
ield","balance","balancer","baltimore","banking","bayarea","bb","bbdd","bbs","bd","bd
c","be","bea","beta","bf","bg","bh","bi","billing","biz","biztalk","bj","black","blac
kberry","blogs","blue","bm","bn","bnc","bo","bob","bof","boise","bolsa","border","bos
ton","boulder","boy","br","bravo","brazil","britian","broadcast","broker","bronze","b
rown","bs","bsd","bsd0","bsd01","bsd02","bsd1","bsd2","bt","bug","buggalo","bugs","bu
gzilla","build","bulletins","burn","burner","buscador","buy","bv","bw","by","bz","c",
"c.auth-
ns","ca","cache","cafe","calendar","california","call","calvin","canada","canal","can
on","careers","catalog","cc","cd","cdburner","cdn","cert","certificates","certify","c
ertserv","certsrv","cf","cg","cgi","ch","channel","channels","charlie","charlotte","c
hat","chats","chatserver","check","checkpoint","chi","chicago","ci","cims","cincinnat
i","cisco","citrix","ck","cl","class","classes","classifieds","classroom","cleveland"
,"clicktrack","client","clientes","clients","club","clubs","cluster","clusters","cm",
"cmail","cms","cn","co","cocoa","code","coldfusion","colombus","colorado","columbus",
"com","commerce","commerceserver","communigate","community","compaq","compras","con",

63

"concentrator","conf","conference","conferencing","confidential","connect","connectic
ut","consola","console","consult","consultant","consultants","consulting","consumer",
"contact","content","contracts","core","core0","core01","corp","corpmail","corporate"
,"correo","correoweb","cortafuegos","counterstrike","courses","cr","cricket","crm","c
rs","cs","cso","css","ct","cu","cust1","cust10","cust100","cust101","cust102","cust10
3","cust104","cust105","cust106","cust107","cust108","cust109","cust11","cust110","cu
st111","cust112","cust113","cust114","cust115","cust116","cust117","cust118","cust119
","cust12","cust120","cust121","cust122","cust123","cust124","cust125","cust126","cus
t13","cust14","cust15","cust16","cust17","cust18","cust19","cust2","cust20","cust21",
"cust22","cust23","cust24","cust25","cust26","cust27","cust28","cust29","cust3","cust
30","cust31","cust32","cust33","cust34","cust35","cust36","cust37","cust38","cust39",
"cust4","cust40","cust41","cust42","cust43","cust44","cust45","cust46","cust47","cust
48","cust49","cust5","cust50","cust51","cust52","cust53","cust54","cust55","cust56","
cust57","cust58","cust59","cust6","cust60","cust61","cust62","cust63","cust64","cust6
5","cust66","cust67","cust68","cust69","cust7","cust70","cust71","cust72","cust73","c
ust74","cust75","cust76","cust77","cust78","cust79","cust8","cust80","cust81","cust82
","cust83","cust84","cust85","cust86","cust87","cust88","cust89","cust9","cust90","cu
st91","cust92","cust93","cust94","cust95","cust96","cust97","cust98","cust99","custom
er","customers","cv","cvs","cx","cy","cz","d","dallas","data","database","database01"
,"database02","database1","database2","databases","datastore","datos","david","db","d
b0","db01","db02","db1","db2","dc","de","dealers","dec","def","default","defiant","de
laware","dell","delta","delta1","demo","demonstration","demos","denver","depot","des"
,"desarrollo","descargas","design","designer","detroit","dev","dev0","dev01","dev1","
devel","develop","developer","developers","development","device","devserver","devsql"
,"dhcp","dial","dialup","digital","dilbert","dir","direct","directory","disc","discov
ery","discuss","discussion","discussions","disk","disney","distributer","distributers
","dj","dk","dm","dmail","dmz","dnews","dns","dns-
2","dns0","dns1","dns2","dns3","do","docs","documentacion","documentos","domain","dom
ains","dominio","domino","dominoweb","doom","download","downloads","downtown","dragon
","drupal","dsl","dyn","dynamic","dynip","dz","e","e-com","e-
commerce","e0","eagle","earth","east","ec","echo","ecom","ecommerce","edi","edu","edu
cation","edward","ee","eg","eh","ejemplo","elpaso","email","employees","empresa","emp
resas","en","enable","eng","eng01","eng1","engine","engineer","engineering","enterpri
se","epsilon","er","erp","es","esd","esm","espanol","estadisticas","esx","et","eta","
europe","events","domain","exchange","exec","extern","external","extranet","f","f5","
falcon","farm","faststats","fax","feedback","feeds","fi","field","file","files","file
serv","fileserver","filestore","filter","find","finger","firewall","fix","fixes","fj"
,"fk","fl","flash","florida","flow","fm","fo","foobar","formacion","foro","foros","fo
rtworth","forums","foto","fotos","foundry","fox","foxtrot","fr","france","frank","fre
d","freebsd","freebsd0","freebsd01","freebsd02","freebsd1","freebsd2","freeware","fre
sno","front","frontdesk","fs","fsp","ftp","ftp-
","ftp0","ftp2","ftp_","ftpserver","fw","fw-
1","fw1","fwsm","fwsm0","fwsm01","fwsm1","g","ga","galeria","galerias","galleries","g
allery","games","gamma","gandalf","gate","gatekeeper","gateway","gauss","gd","ge","ge
mini","general","george","georgia","germany","gf","gg","gh","gi","gl","glendale","gm"
,"gmail","gn","go","gold","goldmine","golf","gopher","gp","gq","gr","green","group","
groups","groupwise","gs","gsx","gt","gu","guest","gw","gw1","gy","h","hal","halflife"
,"hawaii","hello","help","helpdesk","helponline","henry","hermes","hi","hidden","hk",
"hm","hn","hobbes","hollywood","home","homebase","homer","honeypot","honolulu","host"
,"host1","host3","host4","host5","hotel","hotjobs","houstin","houston","howto","hp","
hpov","hr","ht","http","https","hu","hub","humanresources","i","ia","ias","ibm","ibmd
b","id","ida","idaho","ids","ie","iis","il","illinois","im","images","imail","imap","
imap4","img","img0","img01","img02","in","inbound","inc","include","incoming","india"
,"indiana","indianapolis","info","informix","inside","install","int","intern","intern
al","international","internet","intl","intranet","invalid","investor","investors","in

64

via","invio","io","iota","iowa","iplanet","ipmonitor","ipsec","ipsec-
gw","iq","ir","irc","ircd","ircserver","ireland","iris","irvine","irving","is","isa",
"isaserv","isaserver","ism","israel","isync","it","italy","ix","j","japan","java","je
","jedi","jm","jo","jobs","john","jp","jrun","juegos","juliet","juliette","juniper","
k","kansas","kansascity","kappa","kb","ke","kentucky","kerberos","keynote","kg","kh",
"ki","kilo","king","km","kn","knowledgebase","knoxville","koe","korea","kp","kr","ks"
,"kw","ky","kz","l","la","lab","laboratory","labs","lambda","lan","laptop","laserjet"
,"lasvegas","launch","lb","lc","ldap","legal","leo","li","lib","library","lima","linc
oln","link","linux","linux0","linux01","linux02","linux1","linux2","lista","lists","l
istserv","listserver","live","lk","load","loadbalancer","local","log","log0","log01",
"log02","log1","log2","logfile","logfiles","logger","logging","loghost","login","logs
","london","longbeach","losangeles","lotus","louisiana","lr","ls","lt","lu","luke","l
v","ly","lyris","m","ma","mac","mac1","mac10","mac11","mac2","mac3","mac4","mac5","ma
ch","macintosh","madrid","mail2","mailer","mailgate","mailhost","mailing","maillist",
"maillists","mailroom","mailserv","mailsite","mailsrv","main","maine","maint","mall",
"manage","management","manager","manufacturing","map","mapas","maps","marketing","mar
ketplace","mars","marvin","mary","maryland","massachusetts","master","max","mc","mci"
,"md","mdaemon","me","media","member","members","memphis","mercury","merlin","message
s","messenger","mg","mgmt","mh","mi","miami","michigan","mickey","midwest","mike","mi
lwaukee","minneapolis","minnesota","mirror","mis","mississippi","missouri","mk","ml",
"mm","mn","mngt","mo","mobile","mom","monitor","monitoring","montana","moon","moscow"
,"movies","mozart","mp","mp3","mpeg","mpg","mq","mr","mrtg","ms","ms-exchange","ms-
sql","msexchange","mssql","mssql0","mssql01","mssql1","mt","mta","mtu","mu","multimed
ia","music","mv","mw","mx","my","mysql","mysql0","mysql01","mysql1","mz","n","na","na
me","names","nameserv","nameserver","nas","nashville","nat","nc","nd","nds","ne","neb
raska","neptune","net","netapp","netdata","netgear","netmeeting","netscaler","netscre
en","netstats","network","nevada","new","newhampshire","newjersey","newmexico","newor
leans","news","newsfeed","newsfeeds","newsgroups","newton","newyork","newzealand","nf
","ng","nh","ni","nigeria","nj","nl","nm","nms","nntp","no","node","nokia","nombres",
"nora","north","northcarolina","northdakota","northeast","northwest","noticias","nove
ll","november","np","nr","ns","ns-
","ns0","ns01","ns02","ns1","ns2","ns3","ns4","ns5","ns_","nt","nt4","nt40","ntmail",
"ntp","ntserver","nu","null","nv","ny","nz","o","oakland","ocean","odin","office","of
fices","oh","ohio","ok","oklahoma","oklahomacity","old","om","omaha","omega","omicron
","online","ontario","open","openbsd","openview","operations","ops","ops0","ops01","o
ps02","ops1","ops2","opsware","or","oracle","orange","order","orders","oregon","orion
","orlando","oscar","out","outbound","outgoing","outlook","outside","ov","owa","owa01
","owa02","owa1","owa2","ows","oxnard","p","pa","page","pager","pages","paginas","pap
a","paris","parners","partner","partners","patch","patches","paul","payroll","pbx","p
c","pc01","pc1","pc10","pc101","pc11","pc12","pc13","pc14","pc15","pc16","pc17","pc18
","pc19","pc2","pc20","pc21","pc22","pc23","pc24","pc25","pc26","pc27","pc28","pc29",
"pc3","pc30","pc31","pc32","pc33","pc34","pc35","pc36","pc37","pc38","pc39","pc4","pc
40","pc41","pc42","pc43","pc44","pc45","pc46","pc47","pc48","pc49","pc5","pc50","pc51
","pc52","pc53","pc54","pc55","pc56","pc57","pc58","pc59","pc6","pc60","pc7","pc8","p
c9","pcmail","pda","pdc","pe","pegasus","pennsylvania","peoplesoft","personal","pf","
pg","pgp","ph","phi","philadelphia","phoenix","phoeniz","phone","phones","photos","pi
","pics","pictures","pink","pipex-
gw","pittsburgh","pix","pk","pki","pl","plano","platinum","pluto","pm","pm1","pn","po
","policy","polls","pop","pop3","portal","portals","portfolio","portland","post","pos
ta","posta01","posta02","posta03","postales","postoffice","ppp1","ppp10","ppp11","ppp
12","ppp13","ppp14","ppp15","ppp16","ppp17","ppp18","ppp19","ppp2","ppp20","ppp21","p
pp3","ppp4","ppp5","ppp6","ppp7","ppp8","ppp9","pptp","pr","prensa","press","print >>
sys.stdout,er","print >> sys.stdout,serv","print >>
sys.stdout,server","priv","privacy","private","problemtracker","products","profiles",
"project","projects","promo","proxy","prueba","pruebas","ps","psi","pss","pt","pub","

65

public","pubs","purple","pw","py","q","qa","qmail","qotd","quake","quebec","queen","q
uotes","r","r01","r02","r1","r2","ra","radio","radius","rapidsite","raptor","ras","rc
","rcs","rd","re","read","realserver","recruiting","red","redhat","ref","reference","
reg","register","registro","registry","regs","relay","rem","remote","remstats","repor
ts","research","reseller","reserved","resumenes","rho","rhodeisland","ri","ris","rmi"
,"ro","robert","romeo","root","rose","route","router","router1","rs","rss","rtelnet",
"rtr","rtr01","rtr1","ru","rune","rw","rwhois","s","s1","s2","sa","sac","sacramento",
"sadmin","safe","sales","saltlake","sam","san","sanantonio","sandiego","sanfrancisco"
,"sanjose","saskatchewan","saturn","sb","sbs","sc","scanner","schedules","scotland","
scotty","sd","se","search","seattle","sec","secret","secure","secured","securid","sec
urity","sendmail","seri","serv","serv2","server","server1","servers","service","servi
ces","servicio","servidor","setup","sg","sh","shared","sharepoint","shareware","shipp
ing","shop","shoppers","shopping","si","siebel","sierra","sigma","signin","signup","s
ilver","sim","sirius","site","sj","sk","skywalker","sl","slackware","slmail","sm","sm
c","sms","smtp","smtphost","sn","sniffer","snmp","snmpd","snoopy","snort","so","socal
","software","sol","solaris","solutions","soporte","source","sourcecode","sourcesafe"
,"south","southcarolina","southdakota","southeast","southwest","spain","spam","spider
","spiderman","splunk","spock","spokane","springfield","sprint >>
sys.stdout,","sqa","sql","sql0","sql01","sql1","sql7","sqlserver","squid","sr","ss","
ssh","ssl","ssl0","ssl01","ssl1","st","staff","stage","staging","start","stat","stati
c","statistics","stats","stlouis","stock","storage","store","storefront","streaming",
"stronghold","strongmail","studio","submit","subversion","sun","sun0","sun01","sun02"
,"sun1","sun2","superman","supplier","suppliers","support","sv","sw","sw0","sw01","sw
1","sweden","switch","switzerland","sy","sybase","sydney","sysadmin","sysback","syslo
g","syslogs","system","sz","t","tacoma","taiwan","talk","tampa","tango","tau","tc","t
cl","td","team","tech","technology","techsupport","telephone","telephony","telnet","t
emp","tennessee","terminal","terminalserver","termserv","test","test2k","testbed","te
sting","testlab","testlinux","testo","testserver","testsite","testsql","testxp","texa
s","tf","tftp","tg","th","thailand","theta","thor","tienda","tiger","time","titan","t
ivoli","tj","tk","tm","tn","to","tokyo","toledo","tom","tool","tools","toplayer","tor
onto","tour","tp","tr","tracker","train","training","transfers","trinidad","trinity",
"ts","ts1","tt","tucson","tulsa","tumb","tumblr","tunnel","tv","tw","tx","tz","u","ua
","uddi","ug","uk","um","uniform","union","unitedkingdom","unitedstates","unix","unix
ware","update","updates","upload","ups","upsilon","uranus","urchin","us","usa","usene
t","user","users","ut","utah","utilities","uy","uz","v","va","vader","vantive","vault
","vc","ve","vega","vegas","vend","vendors","venus","vermont","vg","vi","victor","vid
eo","videos","viking","violet","vip","virginia","vista","vm","vmserver","vmware","vn"
,"vnc","voice","voicemail","voip","voyager","vpn","vpn0","vpn01","vpn02","vpn1","vpn2
","vt","vu","w","w1","w2","w3","wa","wais","wallet","wam","wan","wap","warehouse","wa
shington","wc3","web","webaccess","webadmin","webalizer","webboard","webcache","webca
m","webcast","webdev","webdocs","webfarm","webhelp","weblib","weblogic","webmail","we
bmaster","webproxy","webring","webs","webserv","webserver","webservices","website","w
ebsites","websphere","websrv","websrvr","webstats","webstore","websvr","webtrends","w
elcome","west","westvirginia","wf","whiskey","white","whois","wi","wichita","wiki","w
ililiam","win","win01","win02","win1","win2","win2000","win2003","win2k","win2k3","wi
ndows","windows01","windows02","windows1","windows2","windows2000","windows2003","win
dowsxp","wingate","winnt","winproxy","wins","winserve","winxp","wire","wireless","wis
consin","wlan","wordpress","work","world","write","ws","ws1","ws10","ws11","ws12","ws
13","ws2","ws3","ws4","ws5","ws6","ws7","ws8","ws9","wusage","wv","ww","www","www-
","www-01","www-02","www-1","www-2","www-
int","www0","www01","www02","www1","www2","www3","www_","wwwchat","wwwdev","wwwmail",
"wy","wyoming","x","x-
ray","xi","xlogan","xmail","xml","xp","y","yankee","ye","yellow","young","yt","yu","z
","z-log","za","zebra","zera","zeus","zlog","zm","zulu","zw"]
 progress = 0

66

 for i in wordlist:
 progress += 1
 sys.stdout.write("\r[+] Progress %i / %s ..."% (progress,len(wordlist)))
 sys.stdout.flush()
 try:
 s = socket.gethostbyname(i+'.'+splithost)
 if (s):
 so = socket.gethostbyname_ex(i+'.'+splithost)
 print("\n[+] Subdomain found!\n | Subdomain: %s.%s \n | Nameserver:
%s\n | IP: %s")%(i,splithost,so[0],s)
 if s == '127.0.0.1':
 print("[!] "+red+"Sub-domain is vulnerable to "+boldred+"Same-Site
Scripting! "+reset+"\n[!] About Same-Site Scripting:\n[!] [
"+green+"https://www.acunetix.com/vulnerabilities/web/same-site-scripting"+reset+"]
")
 print('')
 except(socket.gaierror):
 pass
 def enumform(listofIDs,listofnames):
 lengthofnames = len(max(listofnames, key=len))
 lengthofIDs = len(max(listofIDs, key=len))
 if lengthofnames < 12:
 lengthofnames = 12
 print ("[i] "+green+"Found the following Username/s:"+reset)
 print ("\t+-"+'-'.center(6, '-')+'-+-'+'-'.center(lengthofnames, '-')+"-+")
 print ("\t| "+'ID/s'.center(6, ' ')+' | '+'Username/s'.center(lengthofnames, '
')+" |")
 print ("\t+-"+'-'.center(6, '-')+'-+-'+'-'.center(lengthofnames, '-')+"-+")
 for i,d in zip(listofnames,listofIDs):
 print ('\t| '+d.center(6, ' ')+" | "+i.center(lengthofnames, ' ')+' |')
 print ("\t+-"+'-'.center(6, '-')+'-+-'+'-'.center(lengthofnames, '-')+"-+")
 print("")
 def wpbackupscanner():
 backups = ['wp-config.php~','wp-config.php.txt','wp-config.php.save','.wp-
config.php.swp','wp-config.php.swp','wp-config.php.swo','wp-config.php_bak','wp-
config.bak','wp-config.php.bak','wp-config.save','wp-config.old','wp-
config.php.old','wp-config.php.orig','wp-config.orig','wp-config.php.original','wp-
config.original','wp-config.txt']
 print("[+] Scan Started")
 print("[+] Searching Wordpress Backups...")
 print("[?] Note: Press CTRL+C to skip\n ")
 progress = 0
 backup = []
 backupurl = []
 try:
 for i in backups:
 progress += 1
 sys.stdout.write("\r[+] Progress %i / %s ..."% (progress,len(backups)))
 sys.stdout.flush()
 sock(i)
 if page.getcode() == 200:
 detecting = sock(i,"1")
 if "define('DB_PASSWORD'" in detecting:
 s1 = i
 s2 = data

67

 backup.append(s1)
 backupurl.append(s2)
 except(KeyboardInterrupt):
 print("\n[+] File detection skipped")
 print('')
 for ifile,iurl in zip(backup,backupurl):
 print("[!] "+boldred+"Backup Found!\n"+reset+" | "+red+"Filename:
"+boldred+"%s"+reset+"\n | "+red+"URL: "+boldred+"%s\n"+reset)%(ifile,iurl)
 def wpenumeration():
 import time
 global d4rk,dr1,host
 page = urllib.urlopen(host)
 url = page.geturl()
 if page.geturl() != host:
 print("[i] The remote host redirects to '"+str(url)+"' \n Following the
redirection...")
 host = page.geturl()
 print("\n[+] Scan Started : "+lightgreen+"%s"+reset) % time.strftime("%c")
 print ("[+] Enumeration Usernames...")
 T = 33
 found = 0
 listofusernames = []
 listofids = []
 for i in range(30):
 authorlink = host+"?author="+str(i+1)
 url = urllib.urlopen(authorlink)
 source = url.read()
 if url.geturl() == authorlink:
 break
 else:
 com = str(host)+"/author/"
 res = url.geturl()
 res = res.split("/")
 while len(res) >=3:
 res.pop(0)
 listofusernames.append(res[0])
 listofids.append(str(i+1))
 found = 1
 d4rk = dr1+str(1)+str(T)+str(7)
 if found == 0:
 print("[+] "+red+"No Usernames detected"+reset)
 else:
 enumform(listofids,listofusernames)
 print("[+] Enumeration Completed.")
 print("[+] Scan Ended : "+lightgreen+"%s"+reset) % time.strftime("%c")
 def wpscanner():
 print(" \n[+] Detecting Wordpress")
 wp = 0
 i = 'wp-admin/'
 sock(i) sock is afunc wich is declared in
 if "wp-login.php?redirect_to" in page.geturl():
 wp = 1
 print(green+"[i] "+green+"Wordpress Detected!"+reset)
 if wpenumeration == "on":
 wpenumeration()

68

 else:

 wpenumeration()
 if wp == 0:
 i = 'wp-content/index.php'
 sock(i)
 if page.getcode() == 200 and "" in page.read():
 print("[!] "+green+"Wordpress Detected!"+reset)
 wp = 1
 if wpenumeration == "on":
 wpenumeration()
 else:
 wpbackupscanner()
 wpenumeration()
 if wp == 0:
 print("[!] "+red+"No Wordpress Detected"+reset)
 def redirectcheck():
 global redirect,host
 redirect = 0
 print("[+] Checking Redirection")
 page = urllib.urlopen(host)
 url = page.geturl()
 if page.geturl() != host:
 option = raw_input("[i] "+boldgrey+"Host redirects to "+str(url)+reset+" \n
Set this as default Host? [Y/N]:\n > ")
 if option.lower() == "y":
 host = page.geturl()
 redirect = 1
 else:
 print("[+] URL isn't redirecting")
 def again():
 global
wpenumerator,filedetector,subdomainscan,portscan,wpscan,xssscanner,wpbackupscan,sqlis
canner
 # -- Switches Reset --
 wpenumerator = "off"
 filedetector = "off"
 subdomainscan = "off"
 portscan = "off"
 wpscan = "off"
 xssscanner = "off"
 wpbackupscan = "off"
 sqliscanner = "off"
 # -- Swiches Reset --
 inp = raw_input("\n[+] [E]xit or launch [A]gain? (e/a)").lower()
 if inp == 'a':
 dtect()
 elif inp == 'e':
 exit()
 else:
 print("[!] Incorrect option selected")
 again()

-- Program Structure Start --
 menu()

69

 try:
 global host
 host = raw_input("[+] Enter Domain \n e.g, site.com\n > ")
 if 'https://' in host:
 pass
 elif 'http://' in host:
 pass
 else:
 host = "http://"+host
 print("[+] Checking Status...")
 alive()
 responseheadercheck()
 if xssscanner == "on":
 XSSscan(host)
 if sqliscanner == "on":
 SQLIscan(host)
 if wpbackupscan == "on":
 wpbackupscanner()
 if filedetector == "on":
 files =
['robots.txt','crossdomain.xml','.htaccess','clientaccesspolicy.xml','infophp.php','l
og.txt','logs.txt','CHANGELOG.txt','awstats/data/']
 print("[+] Scan Started")
 print("[+] Searching sensitive files...")
 print("[?] Note: Press CTRL+C to skip\n ")
 try:
 for i in files:
 if i == "awstats/data/":
 sock(i)
 if "<title>Index of /awstats/data</title>" in sourcecode:
 print("[!] awstats detected!\n[!] URL: %s")%(data)
 else:
 sock(i)
 if page.getcode() == 200:
 print("[!] File Found!\n | Name: %s\n | URL: %s\n")%(i,data)
 except(KeyboardInterrupt):
 print("\n[+] File detection skipped")
 if wpenumerator == "on":
 print(" \n[+] Detecting Wordpress")
 wp = 0
 i = 'wp-admin/'
 sock(i)
 if "wp-login.php?redirect_to" in page.geturl():
 wp = 1
 print(green+"[i] "+green+"Wordpress Detected!"+reset)
 wpenumeration()
 if wp == 0:
 i = 'wp-content/index.php'
 sock(i)
 if page.getcode() == 200 and "" in page.read():
 print("[!] "+green+"Wordpress Detected!"+reset)
 wp = 1
 wpenumeration()
 if wp == 0:
 print("[!] "+red+"No Wordpress Detected"+reset)

70

 if wpscan == "on":
 wpscanner()
 if subdomainscan == "on":
 subdomainscanner()
 if portscan == "on":
 portscanner()
 again()
 except(KeyboardInterrupt) as Exit:
 print("\n[+] Exiting...")
 sys.exit()
-- Program Structure End --
dtect()

