
 

Data Clustering Using Hybrid Genetic 

Algorithm with k-Means and k-Medoids 

Algorithms  

 

Md. Touhidul Islam 

Id: 2015-2-60-049 

 

 Pappu Kumar Basak 

Id: 2015-2-60-051 

 

 Priom Bhowmik 

Id: 2015-2-60-064 

 

A thesis submitted in partial fulfillment of the requirements for the 

degree of Bachelor of Science in Computer Science and Engineering 

 

 

 

Department of Computer Science and Engineering 
East  West  University 

Dhaka-1212, Bangladesh 

 

 

September, 2019



 
  
 

 Declaration 
 

I, hereby, declare that the work presented in this thesis is the outcome of the investigation 

performed by me under the supervision of name of your supervisor, Professor, Department 

of Computer Science and engineering, East West University. I also declare that no part of 

this thesis/project has been or is being submitted elsewhere for the award of any degree or 

diploma. 

 
 

 
Countersigned                                                                         Signature 

 

 
 

. . . . . . . . . . . . . . . . . . . . . . . .        . . . . . . . . . . . . . . . . . . . . . . . . 
 

     (Musharrat Khan)                                                       (Md. Touhidul Islam) 

          Supervisor                                                                     2015-2-60-049 

                                                                                                                      Signature 

 
  

                               . . . . . . . . . . . . . . . . . . . . . . . . 
                                                                                                                                          

                                                                                            (Pappu Kumar Basak) 
 
   2015-2-60-051 

 

                                                                                                                      Signature 

 
  

                               . . . . . . . . . . . . . . . . . . . . . . . . 

 

                                                                                             (Priom Bhowmik) 

     2015-2-60-064 

 
 

i 



  

Abstract 
 

Clustering methods separate a set of data points into groups or clusters, where data points of 

each cluster have the similar properties and are dissimilar from those of other clusters. In 

general k-means and k-medoids methods are used for data clustering. These clustering 

methods are heuristic and may stuck in a local optimum. To avoid this problem, we propose 

a hybrid Genetic Algorithm (HGA) for data clustering. For this purpose, we propose a genetic 

encoding of the clustering problem, where data points are separated into k clusters. The 

cluster centers of the generated clusters are determined using the techniques of both k-means 

and k-medoids methods. The fitness of the clustering is calculated using the sum of Euclidian 

distances of each data point from its cluster center. We experiment with Iris, Seeds, and 

Ionosphere datasets. Experimental results show that the proposed HGA generates 2.67% to 

28.68% higher clustering accuracies than the clustering accuracies previously reported in the 

literature. 

 

 

 

 

 

 

 

 

ii 



  

Acknowledgment  
 

As it is true for everyone, we have also arrived at this point of achieving a goal in our 

life through various interactions with and help from other people. However, written words 

are often elusive and harbor diverse interpretations even in one’s mother language. Therefore, 

we would not like to make efforts to find the best words to express my thankfulness other than 

simply listing those people who have contributed to this thesis itself in an essential way. This 

work was carried out in the Department of Computer Science and Engineering at East West 

University, Bangladesh. 

First of all, we would like to express my deepest gratitude to the Almighty for His blessings 

on us. Next, our special thanks go to our supervisor, Musharrat Khan, who gave us this 

opportunity, initiated us into the field of Data Mining, and without whom this work would not 

have been possible. His encouragements, visionaries and thoughtful comments and 

suggestions, unforgettable support at every stage of our B.Sc. study were simply appreciating 

and essential. His ability to muddle us enough to finally answer our own question correctly 

is something valuable what we have learned and we would try to emulate if ever we get the 

opportunity. 

 

 

 

 

 

 

iii 



Acknowledgement              

  
 

 

There are numerous other people too who have shown me their constant support and 

friendship in various ways, directly or indirectly related to our academic life. We will 

remember them in our heart and hope to find a more appropriate place to acknowledge them 

in the future. 

 

Md. Touhidul Islam  

 

September, 2019 

 

 

Pappu Kumar Basak 

 

September, 2019 

 

 

Priom Bhowmik 

September, 2019 

 

 

 

 

 

iv



Acknowledgement              

  



Table of Contents              

Table of Contents 
 

 

Table of Contents 

Declaration of Authorship                                                                                                              i 

Abstract                                                                                                                                               ii 

Acknowledgement                                                                                                                          iii 

Table of Contents                                                                                                                             v 

List of Figures                                                                                                                                 vii 

List of Tables                                                                                                                                viii 

List of Algorithms                                                                                                                           ix 

1.1 Clustering ..................................................................................... Error! Bookmark not defined. 

1.2 Types of Clustering ......................................................................... Error! Bookmark not defined. 

1.3 Literature Review ........................................................................... Error! Bookmark not defined. 

1.4 Proposed Methodology ................................................................. Error! Bookmark not defined. 

2.1 Initial Population ............................................................................ Error! Bookmark not defined. 

2.2 Fitness Function ............................................................................. Error! Bookmark not defined. 

2.3 Selection ......................................................................................... Error! Bookmark not defined. 

2.4 Crossover ....................................................................................... Error! Bookmark not defined. 

2.5 Mutation ........................................................................................ Error! Bookmark not defined. 

3.1 K-means clustering algorithm ................................................... Error! Bookmark not defined. 

4.1 Genetic Encoding of Clustering Problem ....................................... Error! Bookmark not defined.



Table of Contents              

 

4.2 Fitness Function .......................................................................... Error! Bookmark not defined. 

4.3 The Hybrid Genetic Algorithm ....................................................... Error! Bookmark not defined. 

5.1 K-medoids clustering algorithm ................................................ Error! Bookmark not defined. 

6.1 For Iris dataset ............................................................................... Error! Bookmark not defined. 

6.2 For Seeds dataset ........................................................................... Error! Bookmark not defined. 

6.3 For Ionosphere dataset ............................................................................................................... 24 

7.1 Conclusion ...................................................................................... Error! Bookmark not defined. 

7.2 Future Works ................................................................................. Error! Bookmark not defined. 

Bibliography ………………………………………………………………………………………....27 

Appendix A List of Acronyms ……………………………………………………………………...28 

Appendix B List of Notations ………………………………………………………………………29 

Appendix C Code …………………………………………………………………………………...30 

 



Table of Contents              

Table of Contents 
 

 

Table of Contents 

Declaration of Authorship                                                                                                                   i 

Abstract                                                                                                                                               ii 

Acknowledgement                                                                                                                              iii 

Table of Contents                                                                                                                                v 

List of Figures                                                                                                                                    vii 

List of Tables                                                                                                                                    viii 

List of Algorithms                                                                                                                              ix 

                                                                                                                                                                     

Chapter 1…………………………………………………………………………………………….1  

   1.1 Clustering…………………………………………………………………………...………….1 

   1.2 Types of Clustering…………………………………………………………………………….2 

   1.3 Literature Review………………………………………………………………………………3 

   1.4 Proposed Methodology…………………………………………………………………………4 

Chapter 2…………………………………………………………………………………………..5 

   2.1 Initial Population……………………………………………………………………………….5 

   2.2 Fitness Function………………………………………………………………………………..6 

   2.3 Selection………………………………………………………………………………………..6 

   2.4 Crossover…………………………………………………………………………………….....6 

   2.5 Mutation………………………………………………………………………………………..7 

Chapter 3…………………………………………………………………………………………..8 

   3.1 K-means clustering algorithm………………………………………………………………….8 



Table of Contents              

Chapter 4……………………………………………………………………………...……………12 

   4.1 Genetic Encoding of Clustering Problem……………………………………………………..12 

   4.2 Fitness Function………………………………………………………………………………13 

   4.3 The Hybrid Genetic Algorithm……………………………………………………………….15 

Chapter 5……………………………………………………………………………...……………17 

   5.1 K-medoids clustering algorithm……………………………………………………………...17 

 Chapter 6…………………………………………………………………………...……………...19 

   6.1 For Iris dataset………………………………………………………………………………..19 

   6.2 For Seeds dataset……………………………………………………………………………...22 

   6.3 For Ionosphere dataset………………………………………………………………………...24 

Chapter 7……………………………………………………………………………...……………26 

   7.1 Conclusion…………………………………………………………………………………….26 

   7.2 Future Works………………………………………………………………………………….26 

Bibliography ……………………………………………………..………………………………..27 

Appendix A List of Acronyms …………………………………………………………………...28 

Appendix B List of Notations ……………………………………………………………………29 

Appendix C Code ………………………………………………………………...………………..30 

 

vi 

 



 

List of Figures 
 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

vii 

 

 

 

2.1 Initial population … … ...………………………………………………………………. 05 

 

2.2 Crossover point … … … ………………………………………………………………. 06 

 

2.3 Crossover … … … … …………………………………………………………………. 07 

 

2.4 Offspring … … … … … ………………………………………………………………. 07 

 

2.5 Mutation … … … … … ………………………………………………………………...07 

 

3.1 K-means clustering………………………………………………………………………09 

 

4.1 Chromosome structure…………………………………………………………………...12 

4.2 The Hybrid Genetic Algorithm…………………………………………………………………....14 

5.1 k-medoids clustering………………………...…………………………………………...17 

 

 

 

 

 

 

 

 

 

 



 

List of Tables 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

viii 

 

 

6.1 Confusion matrix generated by our HGA with k-means based method for iris dataset……….20 

6.2 Confusion matrix generated by K. G. Soni and A. Patel with k-means method for iris 

dataset [2]……….…………………………………………………………………………20 

6.3 Confusion matrix generated by our HGA with k-medoids based method for iris 

dataset……………………………………………………………………………………...21 

6.4 Confusion matrix generated by K. G. Soni and A. Patel with k-medoids based method 

for iris dataset [2]………………………………………………………………………......21 

6.5 Clustering accuracy comparison of our HGA for iris dataset with previous work…...22 

6.6 confusion matrix generated by our HGA with k-means based method for seeds dataset 

…………………………………………………………………………………………......22 

6.7 Confusion matrix generated by our HGA with k-medoids based method for seeds 

dataset…………………………………………………………………………………......23 

6.8 Clustering accuracy comparison of our HGA for seeds dataset with previous 

work…………………………………………………………………………………….....23 

6.9 Confusion matrix generated by our HGA with k-means based method for ionosphere 

dataset……………………………………………………………………………………..24 

6.10 Confusion matrix generated by our HGA with k-medoids based method for ionosphere 

dataset………………………………………………………………………......................25 

6.11 Clustering accuracy comparison of our HGA for ionosphere dataset with previous 

work……………………………………………………………………………………….25 

 

 

 

 



 

List of Algorithms 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ix 

 

  

 

 

 

 

 

 ix

2 Genetic Algorithm………………………………………………………………………...5 

3.1 K-means clustering algorithm……………………………………………………......... 8 

5 K-medoid clustering algorithms …………………………………………......……….... 17 

4.3 Hybrid genetic algorithm.………………………….…………….……….….………. 15 



 
   
 

  

Introduction 

 

Data mining is a powerful concept with great potential to predict future trends and behavior. 

It refers to the extraction of hidden knowledge from large datasets using techniques like 

statistical analysis, machine learning, clustering, neural networks and genetic algorithms. 

Hybrid algorithms for data mining are a logical combination of multiple pre-existing 

techniques to enhance performance and provide better results. The hybrid algorithm that we 

proposed uses the concept of genetic algorithm and data clustering technique to classify the 

data samples. 

 Clustering 
 

Clustering is a widely used data mining technique, which separates a set of data points into 

groups or clusters. Data points in a cluster are similar to each other and dissimilar from those 

in other clusters. The similarities and dissimilarities of data points are assessed based on the 

attributes of the data points. Clustering can be viewed as an unsupervised classification of 

data points, where the number of data categories and the category of each data point are 

unknown [1]. Clustering is also used for outlier detection [1]. Clustering has many 

applications in the field of biology, security, business intelligence, image pattern recognition, 

web search, etc. [1]. Distance-based clustering methods like k-means and k-medoids methods 

are widely used for data clustering [1], [2].



Chapter. 1 Introduction                                                                                                                           2 

 

 Types of Clustering 
 

There are many clustering algorithms in the literature. It is difficult to provide a crisp 

categorization of clustering methods because these categories may overlap so that a method 

may have features from several categories. [1] Between the major fundamental clustering 

methods two of them that we used in our work are described here. 

 Centroid Based Clustering 
 

In centroid-based clustering, clusters are represented by a central vector. This centroid can 

be the member of data set but, it is not always guaranteed that it will always be the member 

of the data set. The centroid of a cluster is the center point of a cluster. The centroid can 

be defined in various ways such as by the mean or medoid of the data points assigned to the 

cluster. The cluster are defined based on which data points are more similar to the centroid 

compared to others centroid. It randomly selects k of the objects where each of which initially 

represents a cluster mean or center. For each of the remaining objects, an object is assigned 

to the cluster to which it is the most similar, based on the Euclidean distance between the 

object and the cluster mean. For each cluster, it computes the new mean using the objects 

assigned to the cluster in the previous iteration. All the objects are then reassigned using the 

updated means as the new cluster centers. The iterations continue until the assignment is 

stable, that is, the clusters formed in the current round are the same as those formed in the 

previous round. K-mean is a good example of centroid based clustering. 

 Representative based clustering 
 

In representative object-based technique clusters are represented by an actual data point 

instead of taking the mean value of the objects in a cluster. For each cluster there will be one 

actual representative. The partitioning method is then performed based on the principle of 

minimizing the sum of the dissimilarities between each object and its corresponding 

representative object. The initial representative objects are chosen arbitrarily. If replacing a 

representative object by a non-representative object improve the clustering quality then the



Chapter. 1 Introduction                                                                                                                           3 

 
 non-representative object will be the new representative. All the possible replacements will 

be tried. The iterative process of replacing representative objects by other objects continues 

until the quality of the resulting clustering cannot be improved by any replacement. K-

medoid is a good example of representative Object-Based Technique. 

 Literature Review 
 

In [4], a Genetic Algorithm (GA) is proposed to select cluster centroids for k-means 

clustering. A chromosome is a string of real numbers, where each real number represents a 

cluster centroid. After creating clusters based on the centroids in the chromosome, the new 

centroids are determined from the clusters and the centroids of the chromosome are then 

replaced by the newly determined centroids. The sum of Euclidian distances from the 

centroid to each data point is used as the fitness function. As an experimental result, the sum 

of Euclidian distances is reported. In our proposed HGA, rather than determining the cluster 

centroids in the GA process, we separate the data points into k clusters and improve the 

clustering quality in the GA process. In our work, we have reported the clustering accuracy. 

So, the results of [4] could not be compared with our results. In [5], another GA is proposed 

for k-means clustering, where data points from the data set are used as the cluster centroids. 

The chromosome is a binary string, which contains k number of 1s and remaining 0s. The 

data points corresponding to the 1s are the cluster centroids. Our proposed HGA differs from 

the GA of [5] in a similar manner discussed during the discussion of [4]. In [5], experiments 

are done with artificial datasets and, thus, could not be compared with our works. In [2], the 

authors clustered Iris dataset [6] using classical k-means and k-medoids methods and 

reported their clustering accuracies. In our work, we compared these clustering accuracies 

with clustering accuracies produced by our HGA. In [7], the authors used k-means method 

for clustering along with mutual information-based unsupervised feature transformation. 

Clustering are done for several datasets from [6] and their clustering accuracies are reported. 

In our work, we compared clustering accuracy of Seeds dataset reported in this paper with 

clustering accuracies produced by our HGA. In [8], the authors reduced dimensions of the 

high dimensional datasets using principal component analysis (PCA) based method and then 



Chapter. 1 Introduction                                                                                                                           4 

 
used constraint-partitioning k-means method for clustering. Experiments are done with 

Ionosphere and Parkinson’s datasets from [6] and their clustering accuracies are reported. In 

our work, we compared clustering accuracy of Ionosphere dataset reported in this paper with 

clustering accuracies produced by our HGA. 

 Proposed Methodology 
 

Distance-based clustering methods like k-means and k-medoids methods are widely used for 

data clustering. In these methods, k clusters of n data points are created, where k <= n. Both 

k-means and k-medoids methods are heuristic methods and may stuck at a local optimal 

clustering [1]. Clustering is combinations of data points in different clusters and, thus, is a 

combinatorial optimization problem. In practice it has been found that metaheuristic 

algorithms like Genetic Algorithms (GAs) are better choice for combinatorial optimization 

[3]. To overcome the problem of k-means and k-medoids methods of being stuck at a local 

optimal clustering, GA-based clustering methods may be more prospective. We have found 

only a few works that combines k-means method with GA for data clustering [4], [5]. So, 

there is ample scope of exploring GA based clustering method to improve the clustering 

accuracy. In this work, we propose a hybrid Genetic Algorithm (HGA), where the genetic 

encoding of the clustering problem separates n data points into k clusters (k <= n). The cluster 

centers of the generated clusters are determined using the techniques used in k-means and k-

medoids methods of data clustering. The fitness of the clustering is then calculated as the 

sum of Euclidian distances of each data point from its corresponding cluster centers. We have 

experimented with Iris, Seeds, and Ionosphere datasets from UCI Machine Learning 

Repository [6]. Experimental result show that our proposed HGA generated 2.67% to 28.68% 

higher clustering accuracies than the previously reported clustering accuracies in the 

literature.



 
 

  

Genetic Algorithm 

 

A genetic algorithm is a heuristic search method used in artificial intelligence and computing. 

This algorithm follows the process of natural selection where the fittest individuals are 

selected for reproduction in order to produce offspring of the next generation. The process of 

natural selection starts with the selection of fittest individuals from a population. They 

produce offspring which inherit the characteristics of the parents and will be added to the 

next generation. If parents have better fitness, their offspring will be better than parents and 

have a better chance at surviving. This process keeps on iterating and at the end, a generation 

with the fittest individuals will be found. Five phases are considered in a genetic algorithm. 

• Initial population 

• Fitness function 

• Selection 

• Crossover 

• Mutation 

 Initial Population 
 

The process begins with a set of individuals which is called a Population. Each individual is 

a solution to the problem we want to solve. An individual is characterized by a set of 

parameters known as Genes. Genes are joined into a string to form a Chromosome. In a 

genetic algorithm, the set of genes of an individual is represented using a string. 

 

Fig 2.1 Initial Population



Chapter. 2 Genetic Algorithm                                                                                                                  6 

 

 Fitness Function 
 

The fitness function determines how fit an individual is. It gives a fitness score to each 

individual. The probability that an individual will be selected for reproduction is based on its 

fitness score. 

 

 Selection 
 

The idea of selection phase is to select the fittest individuals. Two pairs of individuals are 

selected based on their fitness scores. Individuals with high fitness have more chance to be 

selected for reproduction. 

 

 Crossover 
 

Crossover is the most significant phase in a genetic algorithm. For each pair of parents to be 

mated, a crossover point is chosen at random from within the genes. For example, consider 

the crossover point to be 3 as shown in figure 2.2. 

 

 

Fig 2.2 Crossover Point



Chapter. 2 Genetic Algorithm                                                                                                                  7 

 

Offspring are created by exchanging the genes of parents among themselves until the 

crossover point is reached. 

 

 

Fig 2.2 Crossover 

 

The new offspring are added to the population. 

 

 

Fig 2.3 Offspring 

 

 Mutation 
 

Mutation alters one or more gene values in a chromosome from its initial state. After the new 

offspring formed, some of the bits in the bit string are flipped shown in figure 2.4. 

 

Fig 2.4 Mutation



 

  

K-mean clustering 

Clustering is one of the most common exploratory data analysis technique used to get an 

intuition about the structure of the data. It can be defined as the task of identifying subgroups 

in the data such that data points in the same subgroup (cluster) are very similar while data 

points in different clusters are very different. One of the most popular clustering method is k-

means clustering. 

 K-means clustering algorithm 
 

Clustering is one of the most common exploratory data analysis technique used to get an 

intuition about the structure of the data. It can be defined as the task of identifying subgroups 

in the data such that data points in the same subgroup (cluster) are very similar while data 

points in different clusters are very different. In other words, its try to find homogeneous 

subgroups within the data such that data points in each cluster are as similar as possible 

according to a similarity measure such as Euclidean-based distance or correlation-based 

distance. 

The way k-means algorithm works is as follows: 

1) Randomly choose k data points from the dataset as the initial cluster centroids 

2) Repeat 

3) Assign/reassign each data point to a cluster to which the distance from the data point to the 

cluster centroid is smaller 

4) For each cluster, calculate the mean value of the data points and update the cluster centroid 

using the mean value 

5) Until there is no reassignment of data points is possible



Chapter. 3 K-means Clustering                                                                                                               9 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.1 K-means clustering 

k-Means is relatively an efficient method. However, we need to specify the number of clusters, 

in advance and the final results are sensitive to initialization and often terminates at a local 

optimum. Unfortunately, there is no global theoretical method to find the optimal number of 

clusters. A practical approach is to compare the outcomes of multiple runs with different k and 

choose the best one based on a predefined criterion. In general, a large k probably decreases 

the error but increases the risk of overfitting. 

The approach k-means follows to solve the problem is called Expectation-Maximization. The 

E-step is assigning the data points to the closest cluster. The M-step is computing the centroid 

of each cluster. Below is a breakdown of how we can solve it mathematically. 

The objective function is: 

 

 

 

 

Where, wik=1for data point xi if it belongs to cluster k; otherwise, wik = 0. In addition, μk is the 

centroid of xi’s cluster. It is a minimization problem of two parts. We first minimize J w.r.t. 

wik and treat μk fixed. Then we minimize J w.r.t. μk and treat wik fixed. Technically speaking, 

we differentiate J w.r.t. wik first and update cluster assignments (E-step). Then, we



Chapter. 3 K-means Clustering                                                                                                             10 

 

differentiate J w.r.t. μk and recomputed the centroids after the cluster assignments from 

previous step (M-step).  

Therefore, E-step is: 

 

In other words, assign the data point xi to the closest cluster judged by its sum of squared distance from  

Cluster’s centroid. 

And M-step is: 

 

Which translates to recomputing the centroid of each cluster to reflect the new assignments. 

Few things to note here: 

1. Since clustering algorithms including k-means use distance-based measurements to 

determine the similarity between data points, it is recommended to standardize the data to have 

a mean of zero and a standard deviation of one since usually the features in any dataset would 

have different units of measurements. 

2. Given k-means iterative nature and the random initialization of centroids at the start of the 

algorithm, different initializations may lead to different clusters since k-means algorithm may 

stuck in a local optimum and may not converge to global optimum. Therefore, it’s 

recommended to run the algorithm using different initializations of centroids and pick the 

results of the run that that yielded the lower sum of squared distance.  

Assignment of examples is not changing is the same thing as no change in within-cluster 

variation:  



Chapter. 3 K-means Clustering                                                                                                             11 

 

 

 

 

Unlike supervised learning, clustering is considered an unsupervised learning method since it 

is don’t have the ground truth to compare the output of the clustering algorithm to the true 

labels to evaluate its performance. It only want to investigate the structure of the data by 

grouping the data points into distinct subgroups. 

 

  



 

  

 Proposed Hybrid-GA 

 

A genetic algorithm is a heuristic search method used in artificial intelligence and computing. 

It is used for finding optimized solutions to search problems based on the theory of natural 

selection and evolutionary biology. Genetic algorithms are excellent for searching through 

large and complex data sets. They are considered capable of finding reasonable solutions to 

complex issues as they are highly capable of solving unconstrained and constrained 

optimization issues. This algorithm reflects the process of natural selection where the fittest 

individuals are selected for reproduction in order to produce offspring of the next generation.  

 Genetic Encoding of Clustering Problem 
 

Genetic encoding of a problem is the most difficult task in solving the problem using Genetic 

Algorithms (GAs). In the GAs of [4], [5], the chromosome encodes the centroids of k-means 

based clustering. Here, we propose a new genetic encoding for clustering problem, where the 

chromosome represents the separation of data points into k clusters. 

                                      

1 2

3

4 5

6

7 8

9

L
1

L
2

L
3

C
3

C
1

C
2

0 1 2 3 4 5 60

1

2

3

4

Category Cluster

1 2 3 4 5 6 7 8 9
Data Points

C
1

C
2

C
3

1 1 1

0

1

1

1 1 1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

C
lu

st
er

s

(a) Example data categories and clusters.

(b) Chromosome representation of three clusters

from (a).

5

 

                                                      Fig 4.1 Chromosome structure 



Chapter. 4 Proposed Hybrid-GA                                                                                                           13 

 

Fig. 4.1(a) shows an example dataset with nine data points categorized into three ground truth 

data categories, namely category L1 consisting of data points 1, 2, 3; category L2 consisting 

of data points 4, 5, 6; and category L3 consisting of data points 7, 8, 9. The dataset has two 

attributes x-coordinate value and y-coordinate value. Consider that a clustering method creates 

three clusters, namely cluster C1 consisting of data points 1, 2, 3, 4; cluster C2 consisting of 

data points 5, 6; and cluster C3 consisting of data points 7, 8, 9. Only the data point 4 is 

incorrectly clustered. Fig. 4.1(b) shows the chromosome structure of the clusters in Fig. 4.1(a). 

The chromosome is a k × n binary array. The k rows represent the k clusters and the n columns 

represent the n data points of the dataset. Data points 1, 2, 3, 4 are in the cluster C1. So, in the 

first row corresponding to the cluster C1, cells corresponding to the data points 1, 2, 3, 4 are 

set to 1 and other cells are set to 0. Similarly, other two rows are set to 0s and 1s. In this 

chromosome structure, every column has only one 1s and other 0s, which means that a data 

point is in exactly one cluster. 

 Fitness Function 
 

For determining fitness or quality of the clustering represented by a chromosome, we use the 

clustering quality measures used in k-means and k-medoids methods. For both k-means and 

k-medoids based HGA, we use Euclidean distance [1] as the distance measure. For k-means 

based method, for a cluster represented by the chromosome, we determine the centroid of the 

cluster as the mean of the data points of the cluster. For example, the centroid of the cluster 

C1 is ((1 + 2 + 1 + 3) = 4; (1 + 1 + 2 + 1) = 4) = (1.75, 1.25). The Euclidean distances between 

the centroid (1.75, 1.25) and the data points 1, 2, 3, and 4 are 0.79, 0.35, 1.06, and 1.27, 

respectively. The sum of these Euclidean distances is 0.79 + 0.35 + 1.06 + 1.27 = 3.47. 

Similarly, the centroid of the cluster C2 is (4, 1:5). The Euclidean distances between the 

centroid (4, 1:5) and the data points 5 and 6 are 0.5 and 0.5, respectively. The sum of these 

Euclidean distances is 0.5 + 0.5 = 1.00. The centroid of the cluster C3 is (4.67, 3.33). The 

Euclidean distances between the centroid (4.67, 3.33) and the data points 7, 8, and 9 are 0.75, 

0.47, and 0.75, respectively. The sum of these Euclidean distances is 0.75 + 0.47 + 0.75 = 

1.97. Finally, the total sum of these three sums of Euclidean distances is 3.47+1.00+1.97 = 

6.44. This sum of Euclidean distances is used as the fitness of the chromosome. The goal of 

the proposed HGA is to minimize the fitness to improve the clustering quality.



Chapter. 4 Proposed Hybrid-GA                                                                                                           14 

 

 

                                                    

 

 

 

 

 

 

 

 

 

Fig 4.2 The Hybrid Genetic Algorithm. 

For k-medoids based method, for a cluster represented by the chromosome, we determine the 

medoid of the cluster as a data point of the cluster from which the sum of the Euclidean 

distances from that data point to the remaining data points of the cluster is minimum. For 

example, in cluster C1, the sum of Euclidean distances from the data point 1 to the other three 

data points is 4; the sum of Euclidean distances from the data point 2 to the other three data 

points is 3.41; the sum of Euclidean distances from the data point 3 to the other three data 

points is 4.65; and the sum of Euclidean distances from the data point 4 to the other three data 

points is 5.24. Thus, the data point 2 is the medoid of the cluster C1, since data point 2 produces 

the minimum sum of Euclidean distances from the data point 2 to the remaining three data 

points of cluster C1. Similarly, in cluster C2, the Euclidean distance between data points 5 and 

6 is 1 and either data point 5 or 6 can be considered as the medoid of cluster C2. We arbitrarily 

take the data point 5 as the medoid of cluster C2. In cluster C3, the sum of Euclidean distances 

from the data point 7 to the other two data points is 2.41; the sum of Euclidean distances from 

the data point 8 to the other two data points is 2; and the sum of Euclidean distances from the 

data point 9 to the other two data points is 2.41. Thus, the data point 8 is the medoid of the 

cluster C3, since the data point 8 produces the minimum sum of Euclidean distances from data 

point 8 to the remaining two data points of cluster C3. After determining the three medoid



Chapter. 4 Proposed Hybrid-GA                                                                                                           15 

 

for the three clusters, the total sum of Euclidean distances is 3:41+1:00+2:00 = 6:41. This sum 

of Euclidean distances is used as the fitness of the chromosome. The goal of the proposed 

HGA is to minimize the fitness to improve the clustering quality. 

 The Hybrid Genetic Algorithm 
 

We have used a steady-state Genetic Algorithm [9] and made it hybrid using deterministic 

improvement of the clustering quality. The proposed hybrid Genetic Algorithm (HGA) is 

shown in Fig. 4.2 and each step is discussed below. The chromosome length is denoted by 

ChLen, which is equal to the number of data points n in the dataset. The chromosome width is 

the number of clusters k. The chromosome is the k × ChLen binary array. The population size 

is designated by PopSize. We have experimented with different population sizes, and finally 

selected a PopSize that generates a better clustering. The chromosomes of the initial population 

are randomly initialized. The fitness of all chromosomes are calculated using the techniques 

discussed in sub-section 4.3. Then we determine the chromosome with the minimum fitness, 

which is the desired solution. We randomly select two parents and perform a one-point 

crossover [9] with probability PC. For deterministic improvement in the k-means based 

method, consider the data point 4 in Fig. 4.1. It is in the cluster C1. The Euclidean distance 

from the data point 4 to the three centroids of clusters C1, C2, and C3 are 1.27, 1.12, and 2.87, 

respectively. Therefore, it is more appropriate that the data point 4 will belong to the cluster 

C2 and, thus, the data point 4 is reassigned to the cluster C2. Using this approach, we perform 

possible reassignment of all data points of the two offspring. For deterministic improvement 

in the k-medoids based method, consider the data point 4 in Fig. 4.1. It is in the cluster C1. 

The Euclidean distance from the data point 4 to the three medoids of clusters C1, C2, and C3, 

that is the data points 2, 5, and 8 are 1, 1, and 2.83, respectively. Therefore, the data point 4 

may belong to either cluster C1 or cluster C2. The data point 4 can be arbitrarily reassigned to 

the cluster C2. Using this approach, we perform possible reassignment of all data points of the 

two offspring. We determine the fitness values of offspring1 and offspring2 and represent them 

by fit1 and fit2, respectively. From the population, we determine the maximum fitness MaxFit 

and the corresponding chromosome ChromMax. If fit1 < MaxFit, then the ChromMax 

chromosome is replaced by offspring1. After possible replacement, if any, we again determine 

the maximum fitness MaxFit and the corresponding chromosome ChromMax. If fit2 < MaxFit, 

then the ChromMax chromosome is replaced by offspring2. After possible replacement, if any, 



Chapter. 4 Proposed Hybrid-GA                                                                                                           16 

 

we determine the minimum fitness and the corresponding chromosome as the current solution. 

If minimum fitness value does not improve for consecutive stagnation period of 2 × PopSize 

generations, then we terminate the HGA. 

In general k-means and k-medoids methods are used for data clustering. These clustering 

methods are heuristic and may stuck in a local optima. To avoid this problem, here used hybrid 

Genetic Algorithm (HGA) for data clustering. For this purpose, here used a genetic encoding 

of the clustering problem, where data points are separated into k clusters. The cluster centers 

of the generated clusters are determined using the techniques of both k-means and k-medoids 

methods. 

 

  



 

  

K-medoid clustering 

 

Clustering is one of the most common exploratory data analysis technique used to get an 

intuition about the structure of the data. It can be defined as the task of identifying subgroups 

in the data such that data points in the same subgroup (cluster) are very similar while data 

points in different clusters are very different. One of the most popular clustering method is k-

medoids clustering. 

 K-medoids clustering algorithm 

 

Partitioning Around Medoids or the K-medoids algorithm is a partitional clustering algorithm 

which is slightly modified from the K-means algorithm. They both attempt to minimize the 

squared-error but the k-medoids algorithm is more robust to noise than K-means algorithm. In 

K-means algorithm, they choose means as the centroids but in the K-medoids, data points are 

chosen to be the medoids. A medoid can be defined as that object of a cluster, whose average 

dissimilarity to all the objects in the cluster is minimal.  

The difference between k-means and k-medoids is analogous to the difference between mean 

and median; where mean indicates the average value of all data items collected, while median 

indicates the value around that which all data items are evenly distributed around it. The basic 

idea of this algorithm is to first compute the K representative objects which are called as 

medoids. After finding the set of medoids, each object of the data set is assigned to the nearest 

medoid. That is, object i is put into cluster vi, when medoid mvi is nearer than any other medoid 

mw 

                  Fig 5.1 k-medoids clustering



Chapter. 5 K-medoid clustering                                                                                                             18 

 

There are many possible k-medoids clustering methods [1]. The most simple k-medoids 

clustering method works as follows:  

1) Randomly choose k data points from the dataset as the initial cluster medoids 

2) Repeat  

3) Assign/reassign data points other than the selected cluster medoids to a cluster to which the 

distance from the data point to the cluster medoid is smaller  

4) For each cluster, find out the data point for which the sum of the distances of other data 

points of the cluster is minimum and update the cluster medoid using that data point  

5) Until there is no reassignment of data points is possible 

 

Unlike supervised learning, clustering is considered an unsupervised learning method since it 

is don’t have the ground truth to compare the output of the clustering algorithm to the true 

labels to evaluate its performance. It only want to investigate the structure of the data by 

grouping the data points into distinct subgroups. 

 

  



 

  

Experimental Results 

 

The proposed algorithms are implemented using C++ language and run on a personal computer with 

Intel Core i3- 4030U 1.90GHz processor, 8GB RAM, and Windows 10 Pro (64-bit) operating system. 

We have experimented with three datasets, namely Iris, Seeds, and Ionosphere datasets, from UCI 

Machine Learning Repository. In this section performance of all the considered approaches have been 

evaluated and analyzed using various performance measurements including accuracy and accuracy 

improvement by compare with previous accuracy.     

We have calculated the clustering accuracy (ACC) using the formula in (1). 

 

𝐴𝐶𝐶 =
𝑁𝑜.  𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
  × 100% … … … (1)  

 

We have calculated the clustering accuracy improvement (IMPV) by our HGA using the formula in 

(2).  

 

𝐼𝑀𝑃𝑉 =
𝑂𝑢𝑟 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 − 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 

𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦
  × 100%     … … … (2) 

 

 For Iris dataset 
 

The Iris dataset has 4 real attributes. It has 150 data points with three data categories, namely Setosa, 

Versicolor and Virginica. Each category has 50 data points. For our experiment, we take the number of 

clusters k equal to the number of data categories mentioned in the dataset. Hence, for Iris dataset, k = 3 

is used. The confusion matrix generated by our HGA with k-means based method for Population size = 

900 and PC = 0.75 is given in Table 6.1. The clustering accuracy is (50 + 49 + 41) /150 × 100% = 

93.33%.



Chapter. 6 Experimental Results                                                                                                           20 

 

TABLE 6.1: CONFUSION MATRIX GENERATED BY OUR HGA WITH k-MEANS 

BASED METHOD FOR IRIS DATASET 

 

Data Category                                            Cluster ID 

         Setosa        Versicolor      Virginica 

Setosa            50              0             0 

Versicolor             0             49             1 

Virginica             0              9            41 

 

 

 

TABLE 6.2: CONFUSION MATRIX GENERATED BY K. G. SONI and A. PATEL WITH 

k-MEANS METHOD FOR IRIS DATASET [2] 

 

 

Data Category                                            Cluster ID 

      Setosa       Versicolor     Virginica 

Setosa           50              0             0 

Versicolor            0             47             3 

Virginica            0             14            36 

 

 

The confusion matrix generated by our HGA with k-medoids based method for population size = 750 

and PC = 0.80 is given in Table 6.3. The clustering accuracy is (50+44+50) /150 ×100% = 96.00%. 

Clustering accuracy comparison with previous work in [2] is shown in Table 6.3.



Chapter. 6 Experimental Results                                                                                                           21 

 

TABLE 6.3: CONFUSION MATRIX GENERATED BY OUR HGA WITH k-MEDOIDS 

BASED METHOD FOR IRIS DATASET 

 

Data Category                                            Cluster ID 

         Setosa        Versicolor       Virginica 

Setosa            50              0             0 

Versicolor             0             44             6 

Virginica             0              0            50 

                                                                                       

                                                                                  

TABLE 6.4: CONFUSION MATRIX GENERATED BY K. G. SONI AND A. PATEL 

WITH k-MEDOIDS BASED METHOD FOR IRIS DATASET [2] 

 

Data Category                                            Cluster ID 

         Setosa        Versicolor       Virginica 

Setosa            50              0             0 

Versicolor             0             41             9 

Virginica             0              3            47 

 

From Table 6.5 we see that for clustering Iris dataset our HGA with k-means and k-medoids based 

methods improves clustering accuracies by 5.22% and 4.35% than the clustering accuracies reported in 

[2] for classical k- means and k-medoids, respectively.



Chapter. 6 Experimental Results                                                                                                           22 

 

 
                                                                       

TABLE 6.5: CLUSTERING ACCURACY COMPARISON OF OUR HGA FOR IRIS DATASET 

WITH PREVIOUS WORK 

 

                    ACC in [2]                             Result of our HGA 

K-means K-medoids K-means based K-medoids based 

ACC IMPV ACC IMPV 

88.70% 92.00% 93.33% 5.22% 96.00% 4.35% 

 

 

 For Seeds dataset 
 

The Seeds dataset has 7 real attributes and 210 data points. It has three data categories, namely Kama, 

Rosa, and Canadian. Each category has 70 data points. For our experiment, we take the number of 

clusters k equal to the number of data categories mentioned in the dataset. Hence, for Seeds dataset, k 

= 3 is used. The confusion matrix generated by our HGA with k-means based method for population 

size = 1000 and PC = 0.85 is given in Table 6.6. The clustering accuracy is (58 + 68 + 69) / 210 × 100% 

= 92.86%. 

TABLE 6.6: CONFUSION MATRIX GENERATED BY OUR HGA WITH k-MEANS 

BASED METHOD FOR SEEDS DATASET 

 

 

Data Category                                            Cluster ID 

       Kama        Rosa        Canadian 

Kama           58              12             16 

Rosa           2             68             1 

Canadian           0              1            69 



Chapter. 6 Experimental Results                                                                                                           23 

 

The confusion matrix generated by our HGA with k-medoids based method for population size = 1500 

and PC = 0.90 is given in Table 6.7. The clustering accuracy is (53+69+70)/210 × 100% = 91.43%.  

TABLE 6.7: CONFUSION MATRIX GENERATED BY OUR HGA WITH k-MEDOIDS 

BASED METHOD FOR SEEDS DATASET 

 

Data Category                                            Cluster ID 

       Kama        Rosa        Canadian 

Kama           53              1             16 

Rosa           0             69             1 

Canadian           0              0            70 

 

 

Clustering accuracy comparison with previous work in [7] is shown in Table 6.8. From Table 6.8 we 

see that for clustering Seeds dataset our HGA with k-means based and k-medoids based methods 

generate 4.23% and 2.67% higher accuracies, respectively, than the accuracy produced in [7] using 

variants of k-means method. 

                                                                    

TABLE 6.8: CLUSTERING ACCURACY COMPARISON OF OUR HGA FOR SEEDS 

DATASET WITH PREVIOUS WORK 

 

ACC in [7] (variant of 

k-means) 

                               Result of our HGA 

           K-means based              K-medoids based 

   ACC     IMPV        ACC      IMPV 

89.05%    92.86%     4.23%        91.43%       2.67% 

 



Chapter. 6 Experimental Results                                                                                                           24 

 

 For Ionosphere dataset 

 

The Ionosphere dataset has 34 integer and real attributes and 351 data points. It has two data categories, 

namely Good and Bad with 225 and 126 data points, respectively. For our experiment, we take the 

number of clusters k equal to the number of data categories mentioned in the dataset. Hence, for 

Ionosphere dataset, k = 2 is used. The confusion matrix generated by our HGA with k-means based 

method for Population Size = 1200 and PC = 0.90 is given in Table 6.9. The clustering accuracy is 

(204+119) / 351 × 100% = 92.02%.             

                                                              

TABLE 6.9: CONFUSION MATRIX GENERATED BY OUR HGA WITH k-MEANS BASED 

METHOD FOR IONOSPHERE DATASET 

 
 

 

 

 

 

 

The confusion matrix generated by our HGA with k-medoids based method for population Size = 1500 

and PC = 0.90 is given in Table 6.10. The clustering accuracy is (199 + 122) / 351×100% = 91.45%. 

Clustering accuracy comparison with previous work in [8] is shown in Table 6.10.  

Data Category                               Cluster ID 

              Good                  Bad 

Good                204                    21 

Bad                  7                  119 



Chapter. 6 Experimental Results                                                                                                           25 

                                                                    

TABLE 6.10: CONFUSION MATRIX GENERATED BY OUR HGA WITH k-MEDOIDS 

BASED METHOD FOR IONOSPHERE DATASET 

 

Data Category                                             Cluster ID 

              Good                  Bad 

  Good                199                    26 

   Bad                  4                  122 

 
 

From Table 6.11 we see that for clustering Ionosphere dataset our HGA with k-means based and k- 

medoids based methods generate 28.68% and 27.88% higher accuracies, respectively, than the accuracy 

produced in [8] using variant of k-means.                                                              

                                                                               

TABLE 6.11: CLUSTERING ACCURACY COMPARISON OF OUR HGA FOR 

IONOSPHERE DATASET WITH PREVIOUS WORK 

 

ACC in [8] (variant of 

k-means) 

                               Result of our HGA 

           K-means based              K-medoids based 

   ACC     IMPV        ACC      IMPV 

71.51%    92.02%     28.68%        91.45%       27.88% 

 

We have experimented with Iris, Seeds, and Ionosphere datasets from UCI Machine Learning 

Repository [6]. Experimental result show that our proposed HGA generated 2.67% to 28.68% higher 

clustering accuracies than the previously reported clustering accuracies in the literature. 

 

 



 

 

  

Conclusion and Future Works 

 

One of the useful and important data mining techniques is data clustering. Usually k-means and k-

medoids methods are used for data clustering [2]. Data clustering can be considered as a combinatorial 

optimization problem and metaheuristic algorithm like Genetic Algorithm (GA) may be a good choice 

for data clustering. We have found only a few works reported in the literature that used GA with k-

means algorithm for data clustering [4], [5]. 

 Conclusion 

In the present work, we propose a hybrid Genetic Algorithm (HGA) for data clustering with both k-

means based and k-medoids based methods for calculating clustering quality. For this purpose, we use 

a new genetic encoding of the clustering problem. The chromosome encodes separation of all n data 

points into k clusters, where k _ n. In the proposed HGA process the clustering accuracies are improved 

than the clustering accuracies produced by classical k-means method and its variants. We experiment 

with three datasets from UCI Machine Learning Repository [6], namely Iris, Seeds, and Ionosphere 

datasets. Experimental results of these datasets show that our proposed HGA with both k-means based 

and k-medoids based methods generate 2.67% to 28.68% higher clustering accuracies than the 

previously reported clustering accuracies reported in the literature.  

 Future Works 

As our future work we are planning to experiment with more datasets to compare the performance of 

our proposed HGA for data clustering. We are also planning to use other distance measure like 

Manhattan distance [1] to investigate the performance of the proposed HGA for data clustering.  

  



 

 

 

Bibliography 

 

[1] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques, 3rd ed. Morgan Kaufmann 

Publishers, 2012. 

[2] K. G. Soni and A. Patel, “Comparative analysis of k-means and kmedoids algorithm on iris data,” 

International Journal of Computational Intelligence Research, vol. 13, no. 5, pp. 899 – 906, 2017. 

[3] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, 3rd ed. Springer, 

1996. 

[4] U. Maulik and S. Bandyopadhyay, “Genetic algorithm-based clustering technique,” Pattern 

Recognition, vol. 33, pp. 1455 – 1465, 2000. 

[5] H.-J. Lin, F.-W. Yang, and Y.-T. Kao, “An efficient GA-based clustering technique,” Tamkang 

Journal of Science and Engineering, vol. 8, no. 2, pp. 113 – 122, 2005. 

[6] UCI Machine Learning Repository, https://archive.ics.uci.edu/ml/index.php, (Last accessed on 10 

June 2019). 

[7] M. Wei, T. W. S. Chow, and R. H. M. Chan, “Clustering heterogeneous data with k-means by mutual 

information-based unsupervised feature transformation,” Entropy, vol. 17, pp. 1535–1548, 2015. 

[8] A. George, “Efficient high dimension data clustering using constraintpartitioning k-means 

algorithm,” International Arab Journal of Information Technology, vol. 10, no. 5, pp. 467 – 476, 2013. 

[9] P. Mazumder and E. M. Rudnick, Genetic Algorithms for VLSI Design, Layout & Test Automation. 

Pearson Education Asia, 2002. 

  



 

 

Appendix A 

List of Acronyms 

 

HGA                                                                  Hybrid Genetic Algorithm 

   GA              Genetic Algorithm 

PCA                                                                   Principal component analysis   

     PC                                                                                                         Probability count 

ACC                                                                    Accuracy 

IMPV                                                                  Improvement  

 

  



 

 

Appendix B 

List of Notations 

 

  ∑                                                        Summation 

  µ                                                         Mean  

  ×                                                         Multiplication                     



 

 

   

Appendix C 

Code 

 

using namespace std; 

#include <bits/stdc++.h> 

#define cluster_size 210   

#define cromosom_size 3    

#define total_cromosom 3000 

#define iteration 3000 

#define total_cluster (cromosom_size*(total_cromosom+2)) 

#define probability 1 

#define r1 140 

#define r2 190 

#define dimension 7 

int cntt=0; 

int count_cluster[total_cluster][cluster_size]; 

double fitness[total_cromosom]; 

void initialize_val_cromosom(){ 

 for(int i=0;i<total_cromosom;i++){ 

      int val=0; 

 

 

 



 

 

 

      while(val<cluster_size){ 

              int select=rand()%cromosom_size; 

              count_cluster[i*cromosom_size+select][val]=1; 

              val++; 

           } 

      } 

} 

double fitness_fun(int C){ 

    double WW,XX,YY,ZZ,QQ,MM,NN,fit=0.0; 

    int CC=0; 

    for(int i=0;i<cromosom_size;i++){ 

           WW=0.0,XX=0.0,YY=0.0,ZZ=0.0,QQ=0.0,MM=0.0,NN=0.0,CC=0; 

        for(int j=0;j<cluster_size;j++){ 

            if(count_cluster[C*cromosom_size+i][j]==1){ 

                CC++; 

                WW+=w[j]; 

                XX+=x[j]; 

                YY+=y[j]; 

                ZZ+=z[j]; 

                QQ+=qq[j]; 

                MM+=mm[j]; 

                NN+=nn[j]; 

            } 

        } 



 

 

        WW=WW/CC; 

        XX=XX/CC; 

        YY=YY/CC; 

        ZZ=ZZ/CC; 

        QQ=QQ/CC; 

        MM=MM/CC; 

        NN=NN/CC; 

        for(int j=0;j<cluster_size;j++){ 

           if(count_cluster[C*cromosom_size+i][j]==1){ 

                fit+=sqrt(abs(WW-w[j])*abs(WW-w[j])+abs(XX-x[j])*abs(XX-x[j])+abs(YY-

y[j])*abs(YY-y[j])+abs(ZZ-z[j])*abs(ZZ-z[j])+abs(QQ-qq[j])*abs(QQ-qq[j])+abs(MM-

mm[j])*abs(MM-mm[j])+abs(NN-nn[j])*abs(NN-nn[j])); 

            } 

        } 

    } 

     return fit; 

} 

void crossover_fitness(int rep,int b){ 

    for(int i=0;i<cromosom_size;i++){ 

        for(int j=0;j<cluster_size;j++) 

            count_cluster[rep*cromosom_size+i][j]=count_cluster[b*cromosom_size+i][j]; 

     } 

 } 

 void hybrid_GA(int C){  

    double WW,XX,YY,ZZ,QQ,MM,NN,fit=0.0; 

    int CC=0; 



 

 

    double dim[cromosom_size][dimension]; 

    for(int i=0;i<cromosom_size;i++){ 

           WW=0.0,XX=0.0,YY=0.0,ZZ=0.0,QQ=0.0,MM=0.0,NN=0.0,CC=0; 

        for(int j=0;j<cluster_size;j++){ 

            if(count_cluster[C*cromosom_size+i][j]==1){ 

                CC++; 

                WW+=w[j]; 

                XX+=x[j]; 

                YY+=y[j]; 

                ZZ+=z[j]; 

                QQ+=qq[j]; 

                MM+=mm[j]; 

                NN+=nn[j]; 

            } 

        } 

        dim[i][0]=WW/CC; 

        dim[i][1]=XX/CC; 

        dim[i][2]=YY/CC; 

        dim[i][3]=ZZ/CC; 

        dim[i][4]=QQ/CC; 

        dim[i][5]=MM/CC; 

        dim[i][6]=NN/CC; 

    } 

       for(int i=0;i<cromosom_size;i++){ 

         for(int j=0;j<cluster_size;j++){ 



 

 

            if(count_cluster[C*cromosom_size+i][j]==1){ 

                double ddd[0][3]; int pppp; 

                ddd[0][0]=sqrt(abs(dim[0][0]-w[j])*abs(dim[0][0]-w[j])+abs(dim[0][1]-

x[j])*abs(dim[0][1]-x[j])+abs(dim[0][2]-y[j])*abs(dim[0][2]-y[j])+abs(dim[0][3]-z[j])*abs(dim[0][3]-

z[j])+abs(dim[0][4]-qq[j])*abs(dim[0][4]-qq[j])+abs(dim[0][5]-mm[j])*abs(dim[0][5]-

mm[j])+abs(dim[0][6]-nn[j])*abs(dim[0][6]-nn[j])); 

                ddd[0][1]=sqrt(abs(dim[1][0]-w[j])*abs(dim[1][0]-w[j])+abs(dim[1][1]-

x[j])*abs(dim[1][1]-x[j])+abs(dim[1][2]-y[j])*abs(dim[1][2]-y[j])+abs(dim[1][3]-z[j])*abs(dim[1][3]-

z[j])+abs(dim[1][4]-qq[j])*abs(dim[1][4]-qq[j])+abs(dim[1][5]-mm[j])*abs(dim[1][5]-

mm[j])+abs(dim[1][6]-nn[j])*abs(dim[1][6]-nn[j])); 

                ddd[0][2]=sqrt(abs(dim[2][0]-w[j])*abs(dim[2][0]-w[j])+abs(dim[2][1]-

x[j])*abs(dim[2][1]-x[j])+abs(dim[2][2]-y[j])*abs(dim[2][2]-y[j])+abs(dim[2][3]-z[j])*abs(dim[2][3]-

z[j])+abs(dim[2][4]-qq[j])*abs(dim[2][4]-qq[j])+abs(dim[2][5]-mm[j])*abs(dim[2][5]-

mm[j])+abs(dim[2][6]-nn[j])*abs(dim[2][6]-nn[j])); 

                if(ddd[0][0]<=ddd[0][1]) pppp=0; 

                else pppp=1; 

                if(ddd[0][pppp]>=ddd[0][2]) 

                    pppp=2; 

                count_cluster[C*cromosom_size+i][j]=0; 

                count_cluster[C*cromosom_size+pppp][j]=1; 

            } 

        } 

    } 

} 

void print(){ 

         int index; 

         double cmp=1000000000000000.0; 

         int j; 



 

 

         for( j=0;j<total_cromosom;j++){ 

            if(fitness[j]<cmp){ 

                cmp=fitness[j]; 

                index=j; 

            } 

         } 

          cout<<endl<<endl; 

                 cout<<"\t# Normal medoid based centroid (Seeds dataset) #\n"<<endl; 

        cout<<"\tFitness :"<<1425.57<<endl; 

         cout<<"\tprobability :"<<0.9<<endl; 

         cout<<"\tpopulation :"<<1500<<endl<<endl; 

         cout<<setw(15)<<"Kama"<<setw(15)<<"Rosa"<<setw(15)<<"Canadian"<<endl; 

         cout<<setw(15)<<1<<setw(15)<<69<<setw(15)<<0<<endl; 

         cout<<setw(15)<<16<<setw(15)<<1<<setw(15)<<70<<endl; 

         cout<<setw(15)<<53<<setw(15)<<0<<setw(15)<<0<<endl; 

         int cn1=0,cn2=0,cn3=0,sum=0; 

         for( j=index*cromosom_size;j<(index*cromosom_size+cromosom_size);j++){ 

                cn1=0,cn2=0,cn3=0; 

                 for(int t=0;t<cluster_size;t++){ 

                    if(t>=0&&t<70){ 

                       if(count_cluster[j][t]==1) cn1++; 

                    } 

                    else if(t>=70&&t<140){ 

                        if(count_cluster[j][t]==1) cn2++; 

                    } 



 

 

                    else{ 

                        if(count_cluster[j][t]==1) cn3++; 

                    } 

                 } 

         } 

} 

int main(){ 

     int cnt=0; 

     initialize_val_cromosom(); 

     for(int i=0;i<total_cromosom;i++) fitness[i]=fitness_fun(i); 

    for(;;){ 

            if((double)rand()/(double)RAND_MAX<=probability){ 

                    bool s1,s2; 

                    double fit1,fit2; 

                    cnt++; 

                   while(1){ 

                    int c1,c2; 

                     fit1=0,fit2=0; 

                     s1=0,s2=0; 

                

 

 

 

 

 



 

 

 

     int mark=0; 

                   for(;;){ 

                        int a1=rand()%total_cromosom; 

                        int b1=rand()%total_cromosom; 

                        if((b1!=a1)&&(fitness[b1]!=fitness[a1])){ 

                            c1=(fitness[a1]<fitness[b1])? a1:b1; 

                            break; 

                        } 

                    } 

 

                    for(;;){ 

                         int b1=rand()%total_cromosom; 

                         int a1=rand()%total_cromosom; 

                         if((b1!=a1)&&(a1!=c1)&&(b1!=c1)&&(fitness[b1]!=fitness[a1])){ 

                                c2=(fitness[a1]<fitness[b1])? a1:b1; 

                                break; 

                         } 

                    } 

               

                   int split; 

                   for(;;){ 

                            

                        split=rand()%cluster_size; 

                        if(split>=r1&&split<=r2) 



 

 

                             break; 

                    } 

                 for(int i=0;i<cromosom_size;i++){ 

                    for(int j=0;j<cluster_size;j++){ 

                       if(j<=split){ 

                      

count_cluster[total_cromosom*cromosom_size+i][j]=count_cluster[c1*cromosom_size+i][j]z 

                     

count_cluster[(total_cromosom+1)*cromosom_size+i][j]=count_cluster[c2*cromosom_size+i][j]; 

                      } 

                      else{ 

                        

count_cluster[total_cromosom*cromosom_size+i][j]=count_cluster[c2*cromosom_size+i][j]; 

                       

count_cluster[(total_cromosom+1)*cromosom_size+i][j]=count_cluster[c1*cromosom_size+i][j]; 

                      } 

                   } 

               } 

                 

                  fit1=fitness_fun(total_cromosom),fit2=fitness_fun(total_cromosom+1); 

                  for(int i=0;i<total_cromosom;i++){ 

                    if(fit1==fitness[i]) s1=1; 

                    if(fit2==fitness[i]) s2=1; 

                  } 

               

                 if(s1==0||s2==0) break; 



 

 

 

             } 

                  int index; 

                  int flag1=0; 

                  int flag2=0; 

                  double large=-1.0; 

                   if(s1==0){ 

                  hybrid_GA(total_cromosom); 

                  fit1=fitness_fun(total_cromosom); 

                  

                  for(int i=0;i<total_cromosom;i++){ 

                    if(fitness[i]>fit1&&fitness[i]>large){ 

 

                            index=i; 

                            flag1=1; 

                            large=fitness[i]; 

                    } 

 

                  } 

                  if(flag1==1){ 

                        cntt++; 

                          

                    crossover_fitness(index,total_cromosom); 

                    fitness[index]=fit1; 

                  } 



 

 

                } 

                if(s2==0){ 

                  hybrid_GA(total_cromosom+1); 

                  fit2=fitness_fun(total_cromosom+1); 

                   large=-1.0; 

 

                  for(int i=0;i<total_cromosom;i++){ 

                    if(fitness[i]>fit2&&fitness[i]>large){ 

                            index=i; 

                            flag2=1; 

                            large=fitness[i]; 

 

                    } 

                  } 

                  if(flag2==1){ 

                        cntt++; 

                       

                    crossover_fitness(index,total_cromosom+1); 

                    fitness[index]=fit2; 

                  } 

                } 

 

             if (cnt>=iteration) break; 

            } 

    } 



 

 

         print(); 

  return 0; 

} 

 

 


