An Application Specific Integrated Circuit for
Optimization of Fixed Polarity Reed-Muller
Expressions

Tahseen Kamal
B. Sc. (CSE)

A Thesis submitted to

Department of Computer Science and Engineering
Faculty of Sciences and Engineering
East West University
Dhaka-1212, Bangladesh

as partial fulfillment of the requirements for the degree of
Master of Science in Computer Science and Engineering

April 30, 2006

This work is done with the financial support of “Imdad-Sitara Khan
Foundation, Saratoga, California, USA” under AABEA Imdad-
Sitara Khan Foundation Fellowship program

DECLARATION

This is certified that this thesis is an original work and was done by me and it has not
been submitted elsewhere for the requirement of any degree or diploma or for any other
purposes except for publication.

Signature of the candidate

Jodage . Youmal

Tahseen Kamal)

ACCEPTANCE

The Thesis entitled An Application Specific Integrated Circuit for Optimization of Fixed
Polarity Reed-Muller Expressions submitted by Tahseen Kamal, [.D. No. 2005-2-96-003, to
the Department of Computer Science and Engineering, East West University, Dhaka-1212,
Bangladesh is accepted as satisfactory for partial fulfillment of the requirements for the degree of
Master of Science (MS) in Computer Science and Engineering on April 30, 2006.

BOARD OF EXAMINERS

il e’ ' ol #
. B 1.7 ik ¥ Chairman and Thesis Supervisor

Prof. Dr. Md. Mozammel Huq Azad Khan
Dean, Faculty of Sciences and Engineering
East West University

Dhaka-1212, Bangladesh

WS |
2. \& Member (Exofficio)
~Syed Akhter Hossain

Associate Professor and Chairperson

Department of Computer Science and Engineering
East West University

Dhaka-1212, Bangladesh

B %W M 3 O/ &/06
Prof. Dr. A. B. M. Harun-ur Rashid
Department of Electrical and Electronic Engineering
Bangladesh University of Engineering and Technology
Dhaka-1000, Bangladesh

External Member

Acknowledgement

i would like to start by thanking the Imdad-Sitara Khan Foundation for giving me th
opportunity to conduct the Master of Science in Computer Science and Engineering by providing
zellowship.

[must thank Dr. Md. Mozammel Huq Azad Khan, for being the best guide possible to me.
Without his support this thesis and my MS would never be completed.

The person who has always guided me on this path is the department Chairperson, Mr. Syed
Akhter Hossain. The thesis completion is a result of his support and care which [must admit.

Mr, Shahrier Kabir, Lab In-charge, East West University, should also be thanked for his
technical support.

I must also thank my family members who are and will always be with me when I am in bad
time,

But above everything I would like to thank His almighty, Allah, for giving me the ability,
chance, patience and stamina to complete this task successfully.

Abstract

Classically logic functions are realized using AND-OR two-level circuits. Now a days, EXOR-
sased logic functions have become popular, because they have some specific advantages over
AND-OR realizations [Sasao 1993a). Two-level AND-EXOR logic is one of the EXOR-based
-agics, which is also known as Reed-Muller logic. There are seven classes of AND-EXOR logic
axpressions [Sasao 19932}, A Fixed Polarity Reed-Muller (FPRM) expression is one of them

which is canonical and uses a fixed polarity for each variable. An #n-variable function has 2"

different polarity vectors; consequently, there are 27 different FPRM expressions. The
expression with minimum number of products is the minimum FPRM expression. Therefore, the
minimization problem of FPRM expressions is to find a polarity vector that produces an 'PRM
axpression with minimum number of products along with corresponding coefticients, There are
many software methods for FPRM minimization which are sequential in nature and require
2xponential execution time. In this thesis an ASIC has been developed to minimize 3-variable
FPRM expressions which is parallel in nature and requires constant time, This ASIC takes the
minterm coefficients of a Boelean function as input. It generates ail the polarity vectors for a
three varlable function and determines the optimum polarnty and corresponding FPRM
coefficients.

Table of Contents

Chapter 1
Chapter 2
Chapter 3

Chapter 4

Chapter 5

Chapter 6

References

Introduction to AND-EXOR Expressions
Minimization of Fixed Polarity Reed-Muller Expressions

Introduction to Application Specific Integrated Circuits
(ASICs)

RTL level Architecture of the developed ASIC for FPRM
Minimization
FPGA Implementation of the developed ASIC for FPRM
Minimization

Discussion and Conclusion

26
42

52

61

65
66

Chapter 1
Introduction to AND-EXOR Expressions

1.1 Introduction

There are many ways a Boolean function can be represented. The most popular one is a truth
:3ble representation. The size of the truth table increases exponentially with the increase of »
=umber of variables in the function). Another commonly used approach is the AND-OR
-zpresentation, also known as the Sum-of-Products representation which is more compact than
the fruth table representation. During the last two decades, researchers focused their eyes
2xtensively on realizing logic functions using £XOR-based circuits which is more compact than
“1e AND-OR representation. For example, for representing a parity function an AND-OR

rzpresentation takes 27! product terms, whereas AND-EXOR representation takes n product
:2rms [Sasao 1993a). In this chapter, classification of AND-EXOR logic is presented along with
Zetailed description of each type, their uses and advantages are also discussed [Sasao 1993a].

1.2 AND-EXOR Expansions of Logic Functions

The following three expansions are the basis of the AND-EXOR representation of logic
Zmnctions [Sasao 1991, 1993a, 1993]:

1. Shannon expansion
1. Positive Davio expansion

ili. Negative Davio expansion

1.2.1 Shannon Expansion
The Shannon expansion of a logic function is defined as follows.

Theorem 1.1 (Shannon expansion) An arbitrary n-variable function, f(x;,x,,...x,) can be
=xpanded using the following expansion.

.‘-‘(.\’] ,.x:)‘,...,xn):xrﬁ) -I-xj-f. (1.1)

Here, we oblain f by putting 0 (zero) for x; in f(x],..\:z,...,xn) and /] by putting 1 (one) for x;
= flxy,xg,.0x,). '

S Thus, fo= (.0 ,0 5 b, b and f = %L XX,)

Proof. The theorem is proved using proof by induction. If we put x;=0 in (1.1), we have

"fxl,...x,-_,,0,x{-+1,...,x,;)=(_)~fo +0-fy =f,. Again, if we put x;=1 in (1.1), we get,
“{xy,...x,_ L X x,,)=i'f0 +1- f=f,. Thus we have the theorem. (Q.E.D)

“he Shannon expansion can also be represented in the following way.

Lemma 1.1 (Shannon expansion) An arbitrary n-variable function f(x;.x,,..x,)can be

zxpanded using the following expansion.

o,)= fy @i, 12)

where, fo:f(xl,...x;-_,,O,xj-H X ,,) and f, zf(xl,....rl-_l,l,xm,...,x,,).

Proof. The sub-functions }?fo and x, f; of (1.1) are mutually disjoint. So, + of (1.1) can be
= rzplaced by ®. Thus we have the lemma. (Q.ED)

~ “he circult for the Shannon expansion is shown in Figure 1.1(a). In Shannon expansion, the

»ariable x; appears both as x; and x; .

1.2.2 Positive Davio Expansion

he positive Davio expansion of a logic function is defined as follows.

. Theorem 1.2 (Positive Davio expansion) An arbitrary n-variable function f(x;,x;,...,x,) can
¢ expanded using the following expansion.

"(.-‘C! 2 Xg5 00Xy,)= fo®x, 1, (1.3)
here /= f(x,0 % ,0, % X, by o= F (XX XX,) and fy = fo @ 7

Proof. Since 1 @ x, = x;, from (1.2) we can write f(x,X;,..., X,)=(1®x;) fy®x, f, =
L®x(fo®f1)=foPx; fr. Thus we have the theorem. (Q.E.D)

he circuit for the positive Davio expansion is shown in Figure 1.1(b). In positive Davio
tpansion, the variable x; appears asonly x;.

1.2.3 Negative Davio Expansion

ne negative Davio expansion of a logic function is defined as follows.

Tweorsm 1.3 (Ncgativc Davio cxpansion) An arbitrary n-variable function f(x,,xz, .,.,xn) can

(1.4)

smere Fu= 0% 2) A= oL X%,) and fo = fo @ /i

#ruaf, Since 1 @ ;c:: x;, from (1.2) we can write f(x],xz,.,..xn)z;c:-f@@(l@x_!-)fﬁ
 Tx.(fy® f;)=1,®x, f5. Thus we have the theorem. (QED)

7=z gircuit for the negative Davio expansion is shown in Figure 1.1(c). In negative Davio

+:ransion, the variable x; appears as only x; .

X, X X

o) i |

. V| - N

"""" I A A _
— A e e e
= S D
(@) S (b) pD (c) nD

Figure 1.1 Circuits corresponding to three types of expansions.

1.3 AND-EXOR Expansion Trees of Logic Functions

=~ applying the three expansions of (1.2}, (1.3), and (1.4) for each variable of a logic function,
-z can represent a logic function using the following expansion trees [Sasao 1995].

1.3.1 Shannon Tree

Sj- applying the Shannon expansion recursively to a logic function, we can represent a logic
~ction by a Shannon tree. Figure 1.2 shows an example of a Shannon tree for a 3-variable

Tmetion £, where the symbol S denotes the Shannon expansion. The terminal nodes represent

To=ary constants. Each edge has a literal (uncomplemented or complemented form of a variable)

) e{xi,x_,-} of a variable as a label. A product of the literals from the root node to a terminal

=-Je represents a product term. For example, the right most path represents the product term
= x5 X3. The expression corresponding to this tree is,

“= fooo ¥ 32 X350 foor X1 %2739 foro xl’h 1@ fo1 X%y 9

(1.5)

Fio0 xl-"z X3 X ® Sio1 X1 X x3@ J110 X3 x2x3 © fi1y X)X, X3

TTis expression is a canonical expression (where each product term contains all variables in the
umction). The products having zero coefficients disappear. Thus, the number of non-zero
goerficients equals to the number of products in the expression.

| 1.
| fomJ Lfom fo11

Figure 1.2 A Shannon tree for 3-variable function.

1.3.2 Positive Davio Tree

» applying the positive Davio expansion recursively to a logic function, we can represent a
zi function by a positive Davio tree. Figure 1.3 shows an example of a positive Davio tree for

¥ “hree-variable function f, where the symbol pD denotes the positive Davio expansion. Each

2 2e has a literal x,-* e{ 1, x; } of a variable as a label. The expression corresponding to this tree

= fopo 1°1-1® f0021~1-x3@f0201-x2'1® Fa Loxyxy@®

(1.6)
Foop %) V1@ foop 3y 1-x3 @ fopp Xy X 1D fpn Xy X5 %3

5 expression 1s a canonical expression and uses only positive (uncomplemented) literals.

10

fooo !} fooz | fo20 () foxa

Figure 1.3 A positive Davio tree for 3-variable function.

1.3.3 Reed-Muller Tree

7 we use either the positive or the negative Davio expansion for each variable, we can represent
z jogic function by a Reed-Muller tree. Figure 1.4 shows an example of a Reed-Muller tree for a
variable function f, where the symbols pD and #D denote the Positive and the Negative Davio
pansions, respectively. In this tree, variable x; and x5 use the Positive Davio expansion and

. zriable x, uses the Negative Davio expansion. The expression corresponding to this tree is,

"= S0 11 1@ fon 1 lxy @ fppl 3y 1@ fpp 1%, x;@ a7
Sar0 % 1 1@ fo1p %y - 1-x3® fopg xy x5 1D [y x4 x5 x5

. o . . . 0o .
=is expression is canonical for a given way of expansion. There are 2" different expansions for
: p-variable function. Different expansions will produce expressions with different number of
smoducts.

11

{10 fora I fo20 fo22 f10 f512 f220

Figure 1.4 A Reed-Muller tree for 3-variable function.

1.3.4 Kronecker Tree

+2 use any of the Shannon, the positive Davio and the negative Davio expansions for each
:ble. we can represent a {ogic function by a Kronecker tree. Figure 1.5 shows an example of

32fe x; uses the Shannon expansion, variable x, uses the positive Davio expansion, and

‘zmzTie x3 uses the negative Davio expansion. The expression corresponding to this tree is,

Ce a1 1® S X1 ay® fogy Xy X0 1@ fip xp xg Xy @D (1.8)

& =-variable function. Different expansions will produce expressions with different number of
J. STRBAS

12

fo2) Fia fio1 Froz

001 o2

Figure 1.5 A Kronecker tree for 3-variable function.

> 2 Pseudo Reed-Muller Tree

== zither the positive or the negative Davio expansion for each node, we can represent a
.mouon by a pseudo Reed-Muller tree. Figure 1.6 shows an example of a pseudo

om0 . variables xa and xy use both the positive and the negative Davio expansions. The

=i corresponding to this tree is

11 fooz 1 '1'X3 @D fozol‘l’z’] & _fmzl'j(’z x3® (1 9)
TP ® fopayLxg @ S 0 10 1@ [y Xy xp xg

= - wge there are 2”7 —1 nodes for n-variable functions. So for a given order of the input
‘here are 2% 7' different expansions for n-variable functions. There are »! ordering of

n_ . . 3 - .
.~ artables. Therefore, there are n/-2% ~! different expansions for an »#-variable functions.
- 2xpansions will produce expressions with different number of products.

foo1 o0 tono {022 B0 fH12 th {599

Figure 1.6 A pseudo Reed-Muller tree for 3-variable function.

" 2 Pseudo Kronecker Tree

.z 3¢ any of the Shannon, the positive Davio and the negative Davio expansions for each

-z '»¢ can represent a logic function by a pseudo Kronecker tree. Figure 1.7 shows an
«_~="2 of a pseudo Kronecker tree for a three-variable function f. In this tree, variable x; uses

== >-zngon expansion, variable x, uses both the positive and the negative Davio expansions,

=z - z=able x5 uses all of the Shannon, the positive Davio and the negative Davio expansions.

-2 «oression corresponding to this tree is

by

= s x g @ fogr x1xs @ fog X0 1@ Jogp ¥y xp 03 @ (1.10)

Taxp 1@ Sl xpLxg ® flp X X X3 @ f1p) X X X3

= -z rmree, there are 2" —1 nodes for n-variable functions. So, for a given order of the input

n—
w27 "es. there are 32 ! different expansions for n-variable functions. There are »n’/ ordering of

. n_
-zt variables. Therefore, there are n!-3% 7! different expansions for an n-variable function.

el L

T-=:rzat expansions will produce expressions with different number of products.

-

14

fooo ool fo20 Fo2o f1y) f112 Flag fi2

Figure 1.7 A pseudo Kronecker tree for 3-variable function.

-4 AND-EXOR Representation of Canonical Sum of Products (CSOP) Expressions

- *::nm0n tree generates an expression of the form shown in (1.5). If we replace coefficient f
v o n (1.5), we have the following expression:

=y XX X3 D aggp X X X3 D agyp XX x3D ag x X x3D

T (1.11)
XXy x3 © ayg xpxp x3D ayyg x) xpx3 @ ayyp xp xp X

=z svnression of (1.11) is a canonical expression having all minterms. This is nothing but a sum

...... arm expression or CSOP expression with OR replaced by EXOR, and is known as
:=izal EXOR-sum of products (ESOP) expression.

5 stecific example, f(x1 Xy, X3)= ZE@ S ;;xz X3 D x, ngea X| X5 x3 1s an ESOP
==-::zn1ation of the function f(x;,%,,%3) = Z (1,3,6,7).

m

L. EXOR-based Representation of Disjoint Sum of Products (DSOP) Expressions

+ 2 w2t sum of products (DSOP) expression is defined as follows.

15

MJefEzition 1.1 The disjoint sum of products (DSOP) expression for an z-variable function
7z ¢-...,x,) can be represented as

- : _.X”) - Z+ ,T'C]*.,\’.E*... x; (1'12)

. - * . . -
wE E+ represents OR-sum, every instance of x; in the expression can be 1, x; or x;, and

af o rroduct terms are mutually disjoint.
e rlowing lemma holds for the CSOP expressions,

iemma 1.2 The canonical sum of products (CSOP) expression is a disjoint sum of products
TP expression.

#rw:f. The lemma holds, since all the minterms of a function are mutually disjoint. (QE.D)

Lemma 1.3 The disjoint sum of products (PDSOP) expression for an s-variable function
o ,..‘,x,,) can be represented as

l)l

...... * * *
Xy)= YD X X X, (1.13)
- * . .y e
B Y@ represents EXOR-sum, every instance of x; in the cxpression can be 1, x; or x,,
e
a2 = the product terms are mutually disjoint,

w2 = . Thus, we have the lemma. (QE.D)

.2 Tvpes of AND-EXOR Logic Expressions

7 are different ways of classification of AND-EXOR logic expressions in the literature.
wo2i7iing to the classification of [Sasac 1991, 1993a, 1995], there are seven types of
+77-EXOR logic expressions. They are,

Positive Polarity Reed-Muller (PPRM) expressions

Fixed Polarity Reed-Muller (FPRM) expressions

Pscudo Reed-Muller (PSDRM) expressions

Geuveralized Reed-Muller (GRM) expressions

Kronecker (KRO) expressions

Pscudo Kronecker (PSDKRQO) expressions

. Exclusive-OR Sum of Products {ESOP) expressions.

16

La.1 Positive Polarity Reed-Muller (PPRM) Expressions

% w>sitive Davio tree generates an expression of the form as shown in (1.6). If we replace
s icient fwith b and subscript 2 with 1 in (1.6}, we have the following expression:

=0 Dbggy X3 @ bgpg xy @bopy X3 x3D bygp ¥,

- (1.14)
Sy 1 X3 Dby X x Dby xpxp x5

Tw: expression uses only positive literals, and is called a positive polarity Reed-Muller (PPRM)
m—rzss10n, According to some authors the polarnties of all the variables are 1 and according to
wr-z others the polarities are 0. This expression is a canonical expression and no minimization
T S exists,

Zrroexample, F(x),xp,x3)=x10® x503@® x;x; is a PPRM expression for the function

wo)=Y (3567).

2.2 Fixed Polarity Reed-Muller (FPRM} Expressions

% mzed-Muller tree generates an expression of the form as shown in (1.7). In (1.7) we have the
. -wing observations:

For a subscript ie{O}l} of a coefficient /. the corresponding literal of the associated

*
product term appears as x; =1.

For a subscripti -2 of a coefficient f, the corresponding literal of the associated produet

* e . .
term appears as x; €{ x;, x; } depending on the expansion used.

-3 work, the polarity of an uncomplemented variable is represented by O and that of a
=='>mented variable by 1. The reverse polarity convention is also used in the hiterature, but
wr - zhout this work we will follow this convention.

¥ w2 replace coefficient / with b, subscript 1 with 0, subscript 2 with 1, and literals x, and ;
%o ‘-.':‘ m (1.7), we have the following expression:

* * L3 *
Ywe BDhyyian Dhginxs Bhyyxs @by
o GOE-3 012 01142 A3 LG (115)

P— * */ * * fi * * *
Ty Phygx xp Dby

R j.x{ if polarisiof x,is0
woswolox; < L
¥, if polariryof x; is]

17

i = »ression uses fixed polarity for a given variable and is called a fixed polarity Reed-Muller
. expression. This expression is canonical for a given polarity vector of the variables. In
g he FPRM expression for a logic function is represented as follows;

B — :miple, the FPRM expression for a 3-variable function f(xl,xz,xﬂ with polarity vector p
. can be represented as,

-72.383)=bogy @ boy) X3 B by x2 Doy x2x3 @ bjgo % Dby 63 Dbyox) X2 8Dy Xy X238

aecific example, F{xy,x,,%3)=x1x,® x,x3® x,x3 1s an FPRM expression for the function

Az o x)= Y (1,4,5,7) with the polarity vector p = (101).

----- w D

&& ° Pseudo Reed-Muller (PSDRM) Expressions

sx220 Reed-Muller tree generates an expression of the form as shown in {1.9). This type of
=:5:01 18 called a pseudo Reed-Muller (PSDRM) expression. For a given order of the input

Ly

a5, 287 different pseudo Reed-Muller trees exist. Different orderings of the input
produce different expressions. There are n/ different orderings of n input variables.

3 . n/2% 7! different PSDRM expressions exist for an n-variable function. Different
g2 2005 Wil produce different number of products. An expression with minimum number of

mw of PSDRM expressions is to find an expression having minimum number of products.

B ooample, F(x;.x;.%3)=xx0,@ 5,x3®x1}§ is a PSDRM expression for the function

mo)= 2, 00467).

s 4 Generalized Reed-Muller (GRM) Expressions

% grmerahized Reed-Muller (GRM) expression is derived from a PPRM expression. The PPRM
zerz:3ton for a 3-variable function 1s represented as

T xnxy) =bogg @bogy X3 ®bygjg xp Dby X333

(1.16)
bioo X1 B bygy X X3 @by x X2 Dby x1x3%3

¥ %z “=cly choose the polarities of the literals in (1.16), we have the following expression.

S o x by ® bg vy Obggxy @by xp 13 @by @ (1.17)

&

* * * * Y *
bigixy x5 @byypxy xz ®byypx x3 x4

. . * . -
miw=: 2 eTy exislence of x; denotes either x; or x; .

18

= of expression is called generalized Reed Muller (GRM) expression. In a GRM
both the positive and the negative literals may appear at the same time for a given
= a GRM expression, no two products have the same set of variables. For an n-variable

2 total number of literals is #-2""". Thus 272" diffcrent GRM expressions exist for

¢ function. Different expressions will produce different number of products. An
zn with minimum number of products is the minimum GRM expression for a given
. Therefore, the minimization problem of GRM expressions is to find an expression

~e minimum number of products. For example, G(x,,%>,%;)=x,x,® x,x;® x,x is a
sv.nression for the function f(x),x),x3 J= Zm(0,1,2,5,6,7).

nronecker (K O) Expressions

..... cker tree generates an expression of the form as shown in (1.8). This type of expression
=zt a Kronecker (KRO) expression. There are 3" different KRO expressions for an
=t= function. Different expressions will produce different number of products. An
221 with minimum number of products is the minimum KRO expression for a given
. Therefore, the minimization problem of KRO expressions is to find an expression
minimum number of products. For example, F(x;,x5,x3 J=x;x,x;® x;x,x3 is a KRO

on for the function f(x;,x,,x3)= Zm(OJ).

----- a2 Pseudo Kronecker (PSDK O) Expressions

gudo Kronecker tree generates an expression of the form as shown in (1.10). This type of
mmwession S called a pseudo Kronecker (PSDKRO) expression. For a given order of the input

, 327! different pseudo Kronecker trees exist. Different orderings of the input variables
isce different expressions. There are !/ different orderings of # input variables. Therefore,

* different PSDKRO expressions exist for an #-variable function. Different expressions
sduce different number of products. An expression with minimum number of products is
mum PSDKRO expression for a given function. Therefore, the minimization problem of
P RO expressions is to find an expression having minimum number of products. For

pie, F(x,x;,5)= ;i@xIXZG-) x;x, is a PSDKRO expression for the function), xp,09)=
23).

i Exclusive-OR sum of products (ESOP) Expressions

: 1ve-OR sum of products (ESOP) expression is the most general class of AND-EXOR
gspressions and can be represented as follows:

19

Excinsive-OR sum of products (ESOP) expression for an arbitrary n-variable function
t.....,X,)can be represented as

*

e i,)= Y @y Xy T, (1.18)

e-dently of the other choice.

may assume any of the three values, the number of ESOP product terms in (1.18) will

Zach of the 3 ESOP product terms may be present or absent. So, there are 2> different
e :ons of ESOP product terms, some of which satisfy the given Boolean function. The
e~ :7:0n with minimum number of ESOP product terms is the minimum ESOP expression

@ -: given Boolean function. For example, F(x,x;)=x® x,@® x;x,®x,x, is a ESOP
=< s-on for the function f(x(, x2)= Zm(O,l,Qﬁ).

& X% Double Fixed Polarity Reed-Muller Expressions

= class of AND-EXOR expression has been proposed in [Hirayama 2001]. 1t is stated that
i~.2 Fixed Polarity Reed-Muller (DFPRM) expressions are generalized FPRM expressions
e —>-_ire less product terms than FPRM expressions. The definition is ¢laborated below.

SEaition 1.2 The polarity vector of a given FPRM F is denoted by v(F). v(F) is defincd as the
mew 2: complement of v{(F).

- zzch polarity vector v; denotes the polarity of the variable x;; v;=0 means the positive
o cxpansion is used for the variable x; and v;=1 means the negative Davio expansion is
e msiead.

Befnition 1.3 Let 7, and F;, be FPRMs such that v(Fa)=\—J(Fb), where we assume that the »-
& - 0 v(F) is O without loss of generality. The EXOR combination of the two FPRMs,

o

& = 7. .iscalled a Double Fixed-Polarity Reed-Muller expression (DFPRM) with the polarity

o 6.

vample, we have two FPRM expressions F‘(xl,xz..q.,u)mxl@;2;3)«?4 and
T-.xy, %)= X1% Xy x4 D x1xs. Here, v(F,)= [0, 1, 1, 0] and w{#;)=[1, 0, 0, 1].
B F, = x ®x2x3xy @ xixaxy x4 D x1 x4 is a DFPRM. The polarity of Fis [0, 1, 1, 0].

20

¥ Relations among Various Classes of AND-EXOR Logic Expressions

w 20ms among various classes of AND-1IXOR logic expressions are stated in the following
o= ~asao 1991]

 mrem 1.4 Suppose that PPRM, FPRM, PSDRM, GRM, KRO, PSDKRO, and ESOP denote
- g w: 27 AND-EXOR logic expressions. Then the following relations hold:

i. PPRM < FPRM

ii. FPRM < PSDRM

iti. FPRM < KRO

iv. KRO c PSDKRO

v. PSDRME < PSDKRO
vi. PSDRM < GRM

Mt - clations (1) to (V) are trivial and follow from the definitions. From definition, a PSDRM
e 2 ORM and relation (vi) holds. Thus we have the theorem. (Q.I5.D)

e -: 2lons among the various classes of AND-I:XOR logic expressions stated in theorem (1.4)
e oo in Figure 1.8 [Sasao 19911].

e PSDKRO —

KRO-,

Figure 1.8 Relation among various types of AND-EXOR cxpressions

- xions among various classes of AND-EXOR logic expressions are discussed using the
W - examples [Sasao [991]:
XX D X,x3 6B X X3 13 a PPRM expression, since all the literals are positive.

Xy P x5x; D XyX3 1s @ FPRM expression, but not a PPRM expression, since x; and

x, have positive literals, but x, has negative literals.

2]

Foxx, @ x,%y @ x; x5 is a PSDRM expression, but not a FPRM expression, since x, and
x; have literals of both polarities.

4 XX ®xyx,xy 15 a KRO expression since Xy, X, and x; have literals of both
nelarities.
FOo-@®xx,® XX, 1s a PSDKRO expression, but ot a KRO expression.

contains two products of the highest degrec,
X, @ x,@x,x, is a GRM expression, but not a PSDRM expression.

~roducts of the highest degree.

L BX, DY x,@x,x, is an ESOP expression, but neither GGRM nor PSDKRO
ZXPressions.

L& 27 Advantages of AND-EXOR Logic

&+ -ZXOR logic exhubits specific advantages 111 the following areas [Sasao 1993a].

Testability

N 7-EXOR logic shows the following advantages i the field of testability:
:. PLA implementation of PPRM, FPRM and GRM expressions are very easy to test
[Reddy 1972, Saluja 1975, Fujiwara 1985, Sasao 1994, 1997].

= In AND-EXOR two-level networks, tests that detect all detectable struck-at faults
can be generated in polynomial time of the number of the products. On the other
hand, in AND-OR two-level networks, the test generation problem is not polynomiat
time solvable [Toida 1992].

AND-EXOR circuits are more amenable to efficient testing strategies than their

Boolean counterpart [Mukhopadhyay 1970, Besstich 1985, Helliwell 1988, Harking
1990].

Products Requirements

To-rmments with the existing minimization methods show the following advantages of

£ ".EXOR logic in the field of products requirements:
: For symmetric functions, ESOP expressions never require more products than SOP
expressions [Rollwage 1993,

- For arithmetic functions, the number of products tends to decrease in the following
order; PPRM, FPRM, SOP, KRO, PSDRM, PSDKRQO, GRM and ESOP [Sasao

22

1991, 1993b, Debnath 1995]. Therefore, for arithmetic functions, KRO, PSD
PSDKRO, GRM, and ESOP expressions require fewer products than
expressions.

products tends to decrease in the following order: PPRM, FPRM, KRO, P3D
PSDKRO, SOP, GRM, and ESOP [Sasac 1991, 19934, Debnath 1995]. Tker=

for pseudo-randomly generated functions with 27! true minterms, GRM and ©
expressions require fewer products than SOP expressions.

d. For 4-variable functions, the average number of products decreases in the =1 -
order: FPRM, KRQ, PSDRM, SOP, PSDKRO, and ESQP [Sasao 1991. © -

products than SOPs.

e. For S-variable functions, the average number of products decreases in the 1oz
order: KRO, PSDRM, PSDKRO, and ESOP [Sasao 1991, 1993a].

f. For 6-variavble functions, an ESOP requires at most 16 products wheress ¢
requires 32 products for realizing an arbitrary function [Sasao 1991, 1993a’.

F->m the above discussion, it can be summarized that in general PSDKRO, GRM, an. T
~=zuires fewer products than SOP.

My athesis and Minimization Techniques

£%D-EXOR logic supports design methods, which involve algebraic techniques simil.
=252 encountered with the algebra of real numbers [Mukhopadhyay 1970, Harking 1
Trvig 19781

V'L SI Design

2XD-EXOR logic circuits exhibit a modular structure which may make them s..::7
% _>1design [Fleisher 1983, Helliwell 1988, Green 1991].

Maultiple-valued Logic Synthesis

=z techniques for synthesis and mintmization of AND-EXOR logic extend rezd:
e :porale multiple-valued logic cireuits [Green 1976, 1987, Sasao 1993b].

Application as Tool

= AND-EXOR logic expressions have the following applications as tool:

Fault of any logic circuit can be detected by verification of its Reed-Muller
coefficients [Damarla 1989].

Boolean matching can be detected using FPRM representation as a tool [Tsai 1994a].

Symmetry of Boolean functions can be detected using FPRM expressions as a tool
[Tsai 1996].

Boolean functions can be classified using FPRM expressions as a tool [Tsai 1997].

24

maprer 2
imization of Fixed Polarity Reed-Muller Expressions

>z iatroduction

g ironits may be minimized as AND-OR expression using established techmques such as
'& %.-map, Quine-McCluskey method, Espresso, etc. The starting point, generally, is the sum of
w20 (SOP) forms, and the aim is to reduce the number of terms/literals. The minimization of
Bew. - functions can also be done as AND-EXOR expressions. If we consider the Fixed
Mz~ Rocd-Muller expressions and have an » variable function, then we have 2”7 different
sz . veciors, So there are 2" distinet FPRMs for an n variable function. Different
awor=::0ns will have different number of products. An expression with minimum number of
s> _2": 15 the minimum FPRM expression for a given function. thercfore, the minimization
mwr == of FPRM expressions is to find a polarity vector that produces an FPRM expression
aer - imum number of products.

I2 Literature Review on Minimization of Fixed polarity Reed-Muller (FPRM)
Exgressions

.~ nletely and incompletely specified functions, numerous exact and heuristic minimization
s for FPRMs exist. We discuss some of the representative methods.

X1 Fast exact and quasi-minimal minimization of highly testable fixed polarity
%D EXOR canonical networks [Sarabi 1992]

#er- lapter 1 we know about the different classes of AND-EXOR cxpressions and their
sz zzes, HMere, we will discuss about a fast exact and quasi-mimimal algorithm which
w25 FPRM canonical networks.

B oo o differentiate between the Boolean product terms and the terms in Reed-Mutler forms,
e = “monoterm’ is used for the latter.

W irion 2.1 A monoterm is & produet term in Reed- Muller canontcal {(RMC) forms.

M= -2 acronym RMC is the samc oxpression as the PPRM expressions discussed in chapter 1.
sgw: -2 FPRM is replaced by CGRM (Consistent Generalized Reed-Muller) expressions.

12 {Fisher 19741, the problem of CGRM mimimization ot a switching function can be
- o two steps. The first step is to identify the minimal polarity and the second is to
~2 CGRM expansion of the function with this polarity.

zient method for realizing a CGRM expansion of switching functions is by operating on
;7 disjoint cubes which represent the function [Fisher 1974, Schafer 1991, Varma 19911
- 2thed, the function is represented by disjoint cubes rather than minterms to reduce the
-equirements. Monoterms representing cach cube are expanded and those occurring in
s ~umber of cubes are retained as the ones representing the function. The fast method

:] here uses the new operations of cube commonality, difference, and symmetric

2 together with a fast Gray-code approach to realize a CGRM expansion. Before

=g the method, the monoterms representing each cube, originally reported by |Fisher
“r-the case of CGRM, are given by Theorem 2.1.

rem 2.1 The monoterms originating from a cube for the RMC expansion are all the cubes
- zi ¢ ~heir 1s in the same literal positions as the 1s of the original cube and either 07 or “.”
#e - ieral positions of the original cube. These monoterms is referred to as monoterms
w2~ g the cube.

Table 2.1 Various operators for a single bit

(a} Equivalcnce (b) Cube commonality (c) Cube difference
= 0 1 — I 0 1 — - 0 1 —
0 1 0 = 0 0 1 — 0 e — 1
1 0 1 — 1 1 1 O 1 ¢ ¢ O
- - - = - — O - — ¢ O ¢

e 2255 of realization of CGRM expansion for a given polarity is outlined in the following
» - 5. the function is represented as a set of disjoint cubes. The cubes are then operated by
= alenee operation with the polarity of the CGRM. The symmetric difference of all these
e “ound and monoterms representing each of the resulting cubes are generated in a Gray-
@z _-22r. Finally, the Equivalence operation with the polanity cube is performed on each of
& onoterms to give the CGRM expansion. The number of the resulting monoterms can be
W ~om the inclusion-exclusion principle. This number is given by the following theorem:

Wenrem 2.2 Let C,C5,...,C, be aset of n disjoint cubes. Let S, denote the sum of the number
€ .~ >noterms common in all possible & cubes. The number of monoterms representing the set

LI s

S =28, +45, ~88, +..+ =2V e, (=2l

e

ke :hove equation, S denotes the number of all monoterms that are only in one cube, S,
z7>: Te number of all monoterms that are common in any two cubes, etc.

- .27 identification of the minimal polarity is an NP-hard problem, certain featurcs of the
ez -7 disjoint cubes can be used to reduee the required search space. Some of these features, if

26

© 0 an array, can be used to find the minimal polarity without any search. Others can just
he amount of search needed to find the exact solution. In the case that none of the
=3 exist, the whole exhaustive search needs to be performed.

=.mber of expansion monoterms for a set of disjoint cubes is the difference between the
e 1 of the number of monoterms representing each cube and the number of monoterms that
ame =_~racted because they occur in an even number of cubes. Both of these numbers change
wegh 2 Cferent polarities, The minimal polarity is the one which resulis in the optimum balance
% 207 these two numbers resulting in the least number of expansion monoterms.

! zrc certain features of the function that can be used to reduce the search space for
sz .ing the minimal polarity. For the case of functions that are compriscd of only one cube,
e — nimal polarity can be found directly without any search.

L3N

Tyzorem 2.3 The minimal polarities for a single cubc are the polarities which match all the
i s in the cube. The number of such polarities is equal to 272¢ where Npc 1s the number of

¥~ . -zrals in the eube.

%™~ a function is comprised of more than one cube, there are other featurcs that if they exist,
£ -0 the search space reduction. Theorem 4 provides one criteria for identifying a minimal
» 21y literal based on the columins of an array of disjoint cubes, using Theorcm 2.2,

Thenrem 2.4 Let §';denote the sum of §;s of the cubes which have a value of 1 in a given

= = Let §Y denote the sum of §;s of the cubes which have a value of 0 in that column. Let

"= denote the sum of §,s of the cubes that have both 1s and DCs in the column, assuming
SO—DC

2 . has been changed to a 0. Let i denote the sum of S;s of the cubes that have both 0s

. DCs in the column. The corresponding minimal polarity literal for a column in the array of
o ant cubes should be changed when

- it \ . . i : -
V@'—-Z)*“‘Si +Z(_2)k—1 Si—[)(.a < j{} (_Z)AAS;({} +Z(_ 2)!\—152—1){.
e k=2

Z-=m Theorem 2.4, it is possible to infer the following theorem:

Theorem 2.5 For a column comprised of all Os or all 1s, the corresponding minimal polarity
c2ral is the same as the value in the column. (If the opposite is chosen, the number of
- noterms representing the cubes would be doubled.) For a column comprised of all DC values,
=:her 0 or | will be the mumimal literal value.

- the Txact method of minimization, first it is checked 1f the function is only comprised of one
:.be or two. Direct solution for these cases is found using Theorems 2.3, 2.4 and 2.5, If there arc
=orc cubes involved, first Theorem 2.5 is used to 1dentify any columns in the array of disjoint
-ubes for which minimal polarity fiteral can be found readily. All the other columns are set to the

27

==-= polarity and a search for minimal polarity is performed in Gray-code order, changing one
“mn at a tine.

T-=n a fast heuristic approach to the minimization problem is introduced. The corresponding
reonstics combine the characteristics of the overall number of monoterms and the ones
s.>racting, 1n order to identify the minimal CGRM polarity for a given array of disjoint cubes.
Zzsed on these heuristics, a priority of search for different polarities is devised and a
zmimization algorithm is introduced. This fast program can be used to bring more EXOR
zz1zation into the realm of logic synthesis.

2.2.2 Minimization of fixed-polarity AND/XOR canonical networks [Tsai 1994b]

= the paper [Tsai 1994b] the term GRM is same as the FPRM expressions discussed in chapter

2t f(x] Xy ,‘..,xﬂ)be a completely specified Boolean function. Each of x;, where, x; € {O,I} 1sa

w2riex m the domain of the function. The set of vertices that the function cvaluates ta 7 is called
#=2 on-set of f. The set of vertices that the function evaluates to ¢ is called the off-set of £ A

errctor of a function f; denoted f, , is the function derived from f when x, is set to /.
]

Seilaly, f- is a cofactor of f when x; is set to 0 in f. |f] denotes the number of the on-set

w=—-:25 of f. Here 1, is used to represent the literal of variable x;; t; can be either x; or x;. A

=2 is a product of literals. A vertex is covered by a cube if the vertex is contained in the cube.

s 3polean difference of f with respect to a variable x;, denoted ff is defined as

‘..,x,-,...,x”)(%_f(x,,...,;;,...,x”) . It can be computed from the formula _)":' :fx,_ @f;f_.

¢ the Shannon expansion and the ideanty ; =/@.x,., we can denive
B
T=xflfe

he] recusion IDogram \?‘BB\(\&N‘E\E\\.&»\\
A that simultanecusly genevates both 2

28

:mal polarity vector and the GRM form. To find the optimal polarity of a variable x,, itis

fzcided which of the expression between (2.1) or (2.2) is to be chosen. The one which
kts “=wer cubes in the final GRM form must be chosen. This process will continue recursively
y=u:~ variable and an FDD can be formed.

-~ental results show that the algorithm produces less cubes than compared to [Sarabi 1992,
~#32} and takes)2 second on an average for computation.

A Genetic Algorithm for minimization of Fixed Polarity Reed-Muller
ssions [Drechsler 1995]

g - Algorithms (GAs) are often used in optimization and machine leaming [Davis 1991,
- 1989). One approach to minimize Fixed Polarity Reed-Muller expressions using GA
A ~==— outlined in [Drechsler 1993].

omprised of several steps. These include representation of the problem in GA domain-
2.z2rion of the population, finding an object function or fitness function, setting selection
ez working with various GA operators. For representing FPRM expressions polarity vector
ouos2n for each variable. Thus, each element of the population corresponds to an n-
g2 onal binary vector. A population is a set of vectors. Using this hinary encoding each
= ~zoresents a valid solution.

M = - ~‘ective function that measures the fitness of cach element used here is the number of
==~ “he FPRM corresponding to the chosen polarity. This function has to be minimized to
¢ : 21l two-level representation of the function.

2orion 1s performed by roulette wheel selection. Additionally elitarism is also used [Davis
;" This guarantees that the best element is never gets lost and thus faster convergency is

-+
I

- s helpful to combine GAs with problem specific heuristics [Davis 1991]. The resulting
32 called Hybrid GAs (HGAs).

1 operators used here are reproduction, cressover, 2-fime crossover, mutation, 2-time
g C. mtation with neighbor.

sr-posed GA works in the following steps:

ininally a random population of binary finite strings is gencrated and i elements are
-=timized by the greedy heurtistic as discussed above.

T~z hetter half of the population is copied in each iteration without modification. Then

pop
2

== g2netic operators, reproduction and crossover are applied to another elements.

29

The elements are chosen according to their fitness as described above. The newly created
elements are then mutated by one of the three mutation operators with a given
probability.

The algorithm stops if no improvement is obtained for SO-Iog(best_ﬁtness) iterations,

where best_fitness denotes the fitness of the best element in the population. Finally if
i> 0 the greedy algorithm is applied to the best element.

e genetic operators are iteratively applied corresponding to their probabilities.
Reproduction is performed with a probability of 20%.
= Crossover and 2-time crossover are performed with a probability of 80%.

i Mutation, 2-time mutation and mutation with neighbor are carried out on the newly
generated elements with a probability of 15%.

cenimental results show that for up to 15 variables the proposed HGA gives as many as
uct terms as the exact algorithms give but require much less CPLU seconds. For functions
larger variables, where no optimal solution is known, the results were compared with
~achsler 1994]. The number of product terms are much less than the heuristic approach.

Tz oure GA ie the GA without application of the greedy heuristic, performs not very good,
&z 2 the starting points are too bad. This avoids a fast convergency.

22.4 Fast OFDD based minimization of Fixed Polarity Reed-Muller Expressions
iprechsler 1996]

B =is paper a Fast OFDD (Ordered Functional Decision Diagrams) based minimization
=-~ach has becn proposed.

Befinition 2.2 A DD over X, = {xl,xz,...,xn} is a rooted directed acyclic graph G = (V, E)with
w2\ set V containing two types of vertices, non-terminal and terminal vertices. A non-terminal
#="2¢ v is labeled with a variable from X, called the decision variable for v, and has exactly

.+ successors denoted by low(v),high(v)e V . A terminal vertex v is labeled with a 0 or 1 and

s -0 successors.

Befinition 2.3 A DD is free if each variable is encountered at most once on each path in the DD
r== the root to a terminal vertex. A DD is ordered if it is free and the variables are encountered
® 2 same order on each path in the DD from the root to a terminal vertex.

¥ = ~ossible to definc certain reductions on the decision diagrams in order to reduce their size.
T > ~eduction types are used in this paper [Drechsler 1996]:

30

Type I Delete a node v’ whose successors are identical to the successors of another

Type D: Delete all nodes v whose successor high(v) points to the terminal 0 and connect
the incoming edges of the deleted node to the corresponding successor.

Defmtmn 2.4 A DD is reduced if no reductions can be applied to the DD. Two DDs, Gi and
52, are called equivalent iff G2 results from G1 by repeated applications of reductions and
mverse reductions. A DD, G2, is called the reduction of a DD, G1. if G1 and G2 are equivalent

and 32 itself is reduced.

PBefinition 2.5 An OFDD over X, is given by an ordered DD over X, together with a uniquely

Zetermined decomposition type (here, the positive Davio (1.3) and the negative Davio (1.4)
zxpansions are termed as decomposition types), d; € {pD,nD}assigned to each variable g

- £{l,...,n}). The function f, : B" — B represented by an OFDD G over X, is defined as:

1. If G consists of a single node labeled with 0 (1), then G is an OFDD for f= @ (f=1).

ii. If G has aroot v with label x;, then GG is an OFDD for
{flow(v) @ ’xlfhlgh(y) : di iS pD

f!ow)@ ;ifhigh(v) : di isnD
where [y (fhzgh) is the function represented by the OFDD rooted at low(v Khigh(v)).

Definition 2.6 A node in an OFDD is called a positive Davio-node if it is expanded by Davio
Zecomposition (2.1) and it is called a negative Davio-node if it is expanded by Davio
zecomposition (2.2).

Then the relation between OFDDs and FPRMs are outlined. This relation directly outlines
mzthods for the construction of small or minimum FPRMs, In an OFDD a positive Davio or a
zezative Davio decomposition is carried out in each node. The reduction type D guarantees that a
2adz is deleted, if the function represented at this node is independent from the corresponding
« zriable. The paths from the root of the OFDD to the terminal one (1) are closely observed. They
== caljed 1-paths. Each 1-path defines a subset of the variables &, that uniquely corresponds to

1 T-term in the FPRM. Thus, the following theorem is derived.

L e

Theorem 2.6 The number of 1-paths in an OFDD for the Boolean function f :B” — B is
=12l 1o the number of terms in the FPRM. The choice of decompositions in the OFDD

Zer zrmines the polarity of the FPRM.

** ~asitive Davio decomposition is used, the variable in the FPRM is uncomplemented and it is
~rmolemented, if negative Davio decomposition is used. Obviously, the construction of the

F2RM from a given OFDD for a single output function has running time O(n.), where

31

':'rms| denotes the number of terms. The number of terms for the FPRM can easily be

ermined from the OFDD for a single output function by a simple depth-first-search algorithm
=2 counts the number of 1-paths. The algorithm has running time O(G). Thus, OFDDs with a
=..nmum number of 1-paths to get FPRMs with a minimum number of terms is determined.

= 21 OFDD with fixed decompositions is given and the decomposition corresponding to one
#znable x; is to be changed from positive Davio to negative Davio or vice versa this can be done

g ciently in polynomial time as follows: An EXOR-operation is carried out at gach node labeled

gt
LLid II- .

Zatermine the minimum FPRM for a given function f an OFDD with only positive Davio-
men225 15 built up. Then it is transformed step by step to an OFDD with only negative Davio-

m2s. OFDDs for cach possible choice of decomposition types are constructed, i.e. 2” OFDDs
a= constructed. For each OFDD the number of 1-paths is determined and the best result is

s~ that it performs very fast. One main reason for this, are the efficient operations on the
5.

#ewr - Tunctions for which the OFDD can be constructed the minimum FPRM can be obtained.
ez ::n be done for (some) functions with several hundred variables. Thus, this approach is
m=z_. .mited by the running time, but not by the space requirement.

== A semicustom IC for generating optimum generalized Reed-Muller expansions
2ini 1997]

r

zoer LAlmaini 1997] explains the theory and design of a semiicustom integrated circuit (IC)
$ie zzneration of the optimum polarity of a given Boolean function. Given the minterm
I 2oz of a Boolean function, the chip computes coefficients of all the fixed polarities of the
n. -23 Reed-Muller (GRM) expansions, and identifies the polarity with the least number of

=~ o4 for conversion between function coefficients and GRM coefficients is based on the
=angle [Almaini 1996} The X coefficients, where, X € {0,1}, of the minterms are
. = arow and adjacent digits are EXORed to produce the below and so on. The resulting
- zlements of each row are the coefficients for f,. It was observed that the right-most
- cach row are the coefficients for fi5. The transformation may be reversed if the

=5 of fg and f5 are reversed.

~fthe ASIC for a 4-variable function, with sixteen input lines, includes CONV, the
xizle converter, a four bit counter COUNT, ADD-which computes the weights of the
-=riors. Here, the weight refers to the number of logic ones, which is equal to the

32

zzmber of terms. The weight is stored in REG while the coefficients of the polarity are stored in
FEGOUT. REG and REGOUT are 4 and 16 bit registers. These hold the weight of f; and its

~efficients and update their content only if a better polarity is found. COMP compares the
=z1ghts of the present polarity and last best polarity. Polarity vectors are computed on the
=azsitive edge of clock pulse. By the end of the sixteenth clock pulse REGOUT hold the
roefficients of the best polarity.

22.6 Mapping of fixed polarity Reed-Muller coefficients from minterms and the
inimization of fixed polarity Reed-Muller expressions [Khan 1997]

e paper [Khan 1997], an efficient and simple algorithm for mapping FPRM coefficients
-~ the on-set minterms of the function for a given polarity vector is presented. Another
#e=_-istic algorithm for finding an optimal polarity vector from the on-set minterms that produces
#e ~ear minimum FPRM expression is also presented. Both these algorithms are developed for
sz 2 2-output fully specified functions.

zr ne purpose of mapping FPRM coefficients and the heuristic determination of an optimal
221y vector from the on-set minterms, the following definitions and lemmas are required.

Befinition 2.7 Let x be a variable and e € {0, 1, 2}. x© is a literal of x such that

Y if e=0
xx if e=1
1 if e=2

-ononical sum of products (CSOP) for an arbitrary n-variable function f (X) is represented

= Srqxt= Yoaxt (23)
&0, 1" kefo, 1}"

= ~ + and Z@ represent OR-Sum and EXOR-Sum respectively, X :(xl, X3,.0X,) 18
-imzble array, & :(ﬁ'c1 kz...k,,)e {O, 1}" is the polarity n-tuple for the minterm
= -:2{0,1}" }Jk €{0,1} are the CSOP coefficients, and X* =(ka‘ x5 ...xﬁ”J is the

- corresponding to the coefficient ¢, and exists iff a; =1.

sh 2.8 Let y= (}’1 Vs ,..__vn)e {0, 1,2}” . The number of 1s in y is denoted by T(y).

&0 2.9 The value of Boolean difference of an arbitrary function of n-variables f(X)

=10 X at X =(0,0,...,0) is defined as

33

el

!
dX H0,0,...0) meM

b=k by ok,)e {12}, aX " =axliaxl _axln, a® = d' =1,

\ 0,1 k=1
e M= {m = (m,mz...mn (Vi)mi = {2 {; PRERYE Z :(zl Zs ...z”) and
if by =2
0 if m=0
(‘v”f)z{- =<1 i m =1
2 ifm=2

Befinition 2.10 K, = {k = (k[kz...k”)e {0,1}"{%: 1} 1s the set of polarity n-tuples for the ON-

erms of flY). K = {k = (kiky..k,)€ {O,]}”Iak: O} is the set of polarity n-tuples for the
£ F-minterms of f/{X}.

Theorem 2.7 by, | =1 ifand only if}Konl is odd.

Theorem 2.8 (vre {0, 1]")h, = S @d where d =|d]d}.d])= (v kv p)alivEv),
kek,,

o= (pi P2 Ph) € {0, 1}" is the polarity vector for the variable array, and

i (vi)d; =1

E]

0iff (3i)d; =0

d
..~ and are bhilwise operators.

Fheorem 2.9 b, o =1 iff pe K,,-

“epending on Theorems 2.7-2.9, an algorithm is developed for mapping the FPRM coefficients
Zam the on-set minterms.

= this algorithm, }Kon] numbers of on-set minterms are to be stored, where average and

. f
maximum values of 'Kong are,

34

27, respectively. Therefore, both the average and maximum space complexities of this

sthm is 0(2”], where the coefficient of the average complexity is 0.5 times that of the

cmmwy: um complexity. The average and maximum computational time complexities of the

methm are 0(4”) where the coefficient of the average complexity is 0.5 times that of the
mun complexity.

rset minterms. ONE(i) = Zkef(k; 1s the number of 1sin K, ;. ZERO(i) = lKO,z!— ONE(i) is

2mberof Osin K

LT
“ollowing observations were found during the experimentation of the algorithm.

ervation 2.1 If all product terms of the function are canonical product terms, i.e. minterms,
the optimal value of p; is likely to be 1 if iKo,,j 1s even or both {Kon’ and ONE(i) are odd;

i the optimal value of p, is likely to be 0 if K0n| 1s odd and ONE(i) 1s even.

ample 2.1 Let f(x,,_rz,,r3)=x1x2x3 +x1x2x3 + x1xpx3 +x x2x3. Here, the function

iains four minterms, therefore the optimal values of p;, p, and ps are likely to be 1.

servation 2.2 If some product terms of the function are non-canonical product terms, then
-gptimal value of p; is likely to be 1 if ONE(i)= ZERO(i); and the optimal value of p; is

vio be 0 if ONE(i) < ZERO(i).

ample 2.2 Let f(x;,x,,%;)=x1x2x3+x1x3 + x;x3. Here, ONE(l)=1, ZERO(1)=2,
(3)=2, and ZERO(3)=1. Therefore, the optimal value of p, is likely to be 0 and the
omal value of p; 1s likely to be 1.

K

x, /5 (expansion using p;=1) contains the same set of minterms as the original function.

ma 2.1 If a function f(x,,xz,...,xn) contains only minterms and ONE(i)= then

onlf

tlarly, if a function f(xl,xz,.‘.,xﬂ) contains only minterms and ONE(i)=0, then f, @)_Cgfz

ansion using p;=0) contains the same set of minterms as the original function.

35

nding on Observations 2.1 and 2.2 and Lemma 2.1, an algorithm is dcveloped for
stically finding an optimal polarity vector from on-set minterms that produces the near
a1l FPRM expressions. The maximum and the average computational time of this algorithm

nl: E2")

#2." Sympathy: Fast Exact Minimization of Fixed Polarity Reed-Muller
Expressions for Symmetric Functions [Drechsler 1997]

B2 an exact algorithm, Sympathy has been implemented, to minimize FPRMs for symmetric
=zitons and the required computation time is polynomial. In [Drechsler 1996] close relations
B zen OFDDs and FPRMs have been investigated.

= lefinition of OFDD and related terms are described in the previous section.

Tyeorem 2.10 Let G, G, be OFDDs with the same Decomposition Type List (DTL) 4 and with
#= :ame ordering. Then the EXOR-synthesis of (5, and G, can be performed by an algorithm of
mplexity()ﬂ(}ll - ‘GZD resulting in an OFDD bounded by the same size.

wmetric functions are used here. Let f : B" — B be a totally de¢fined Boolean function and

L= {x],xz,...,xn} be the corresponding set of variables. The function f'is said to be symmetric
® " respect to a set § <X, if f remains invariant under all permutations of the variables in S.

Par :-mpletely specified functions the symmetry is an equivalence relation which partitions the
2 Into disjoint classes S,..., Sy that will be named the symmetry sets. A function f'is called

e 3ily symmetric if it has at least one symmetry set §; with §; >1. 1f a function fhas only one
mmetry set S =X, , then fis called totally symmetric. For example, f =x1X2..x, is a totally
wmmetric function. If x;,x;, €8, € X, x; #x; and 1</ <k fis called pairwise symmetric in
. .ij. A simple consequence of pairwise symmetry is the following lemma.
t emma 2.2 A function is pairwise symmetric in [x‘,-,ij iff £ - =/~

XX XiX;

= the following paragraphs the problem of finding minimal FPRMs for totally symmetric
T.nctions is considered. The results will also be applied to partially symmetric functions.

is showed below that the number of different FPRMs that have to be considered during
imization of FPRMs for symmetric functions can be tremendously reduced.

Theorem 2.11 Let f'be pair-wise symmetric in ‘\x,-,xj-). For Decomposition Type Lists (DTLs)

={d)..d,.d;.d, Jand d' =(dy..d;..d,.d,) itholds | £y] =| /]

36

: .emma 2.2 a straightforward computation shows that it does not influence the number of

o whether fis first decomposed by pD for x; and then by nD for x; or first by nl¥ foryx,

21 by pD for x;. From the theorem it is obtained:

ilary 2.1 There exist at most n+1 FPRMs for a totally symmetric function that differ in size.
e Corollary found that it 1s sufficient in the following to only consider FPRMs for the set

o+ 1DTLs: D= ‘:df |d" = (nd)i (pa’)”""i A0<i< n}.

c: JFDDs arc used for the construction of the FPRMs and a polynomial algorithm is aimed
~+ minimization, it 18 1o be proved that an OFDD for a totally symmetric function has at
e ~>ihwnomial size in the number of » variables.

= Zollowing, given 1s an upper bound for the size of the OFDDs for totally symmetric
¢ -5 with DTLs as they will occur in the exact algorithm.

rem 2.12 Each OFDD with DTL d’ € D(i € {0,...,n}) that represents a totally symmetric

p22n function £ has size O(ﬂ3]

gz, e size of OFDDs with only positive Davio-nodes is O(nz). (The same argumentation
7or OFDDs with ounly negative Davio-nodes.) Then the case where the upper variables are
—wosed by negative Davio-nodes are considered, while the lower variables are decomposed
=z 2tive Davio-nodes. The assertion of the theorem then follows from the fact that the lowest
= Zzcomposed by negative Davio-nedes has at most # nodes and that the functions f,, and

“.. ofatotally symmetric function fare totally symmietric.

surem 2.13 The transformation of an OFDD with DTL ' e D(ie {(},...,n—l})of a totally

—zme function / of n variables to an OFDD with DTL d**' € Dhas time and space
T Ity t"')|\nfJ]

«remt 2.14 The exact algorithm for the FPRM muimmuzation of a totally symmetric function f°

-:rables has running time O(n?) and space requirement O(né).

Prw?: The running timie of the algorithm is dominated by the transformation (from Theorem
Thus, the overall performance of the algorithm is directly obtained, since the

=~ - ~nation has to be carried out n times. The space requirement is O(n6), since this 1s the

wars - :s¢ during the transformation. (The resulting OFDDs have at most size O(n3).)

37

gh the algorithm can only be estimated by a polynomial of high degree (due to the worst
wrehavior of the EXOR-operation) all experiments have shown that the algorithm is very fast
shows linear behavior with respect to the running time.

Exact minimization of Fixed Polarity Reed-Muller expressions for
pletely Specified Functions [Debnath 2000)

paper [Debnath 2000], the operators ‘+’ and ‘—’ indicate arithmetic and mod-2 addition,
e lvely,

ion 2.12 An n-variable switching function f is a mapping f :{0,1}" — {0,1} and an n-

e integer valued function g is a mapping g : {0,1}" — {0,1,..., p - 1} where p <2.
uld be noted that switching functions are a subset of integer-valued functions.

ition 2.13 An n-variable integer-valued function f(x,,x,,..,%,)can be written as

mj-xf" xgz...xﬁ" where m; & {00, p=1(p 22V by, By, b, € {01} such that bby..b, is

#-bit binary number representing j, x:”' =x; when b, =0, x:"‘ =x; when
qandi=1,2,...,n. Then l’nO"nl""’mz”_1J is the truth vector of f.
mple 2.3 The truth vector of the three-variable switching function ;1;3;3\/;" is

.0,1,1,1,1], and that of the three-variable integer-valued function 3x; +4dx,x, +2x3 is
45,3571

r. n-variable completely specified switching function there are 2” distinct FPRMs, and the
uzation problem is to find a polarity vector that produces an FPRM with minimum number
ucts. On the other hand, for an n-variable incompletely specified switching function with

=specified minterms there are 2”'“ distinct FPRMs, and the minimization problem is to find
ity vector and an assignment of the unspecified minterms to 0’s and 1’s that produce an
with minimum number of products. Once the polarity vector and the assignment of the
fied minterms are determined, generation of an FPRM is relatively easy [Davio 1978,
: 1996].

od for the exact minimization of FPRMs for three-variable switching function has been
d in this paper. The method is based on the computation of extended truth vector and
vector [Davio 1978, Sasao 1996]. In general, for an n-variable completely specified

ng function, extended truth vector is a binary vector [t.,tl - _1J with 3" elements, and
i vector 1S an integer vectorlwo,w, ‘...,wz,,_IJ with [to,tl,‘..,rx,,_ij clements, Each element

e weight vector is associated with a polarity vector.

38

et an n-variable switching function £, polarity vector for w; is a binary vector (by,by,...,0,,)

% that b,b,,..,b, the n-bit binary number representing j, (ij,],...,2” —1), and w;

cresents the number of products in the FPRM for fwith polarity vector (b;,b,,...,5,).

7 an n-variable switching function with o unspecified minterms d,,d,,...,d,, , extended truth

[S

<:0r is a vector of switching functions fi(dl ,dy ,...,a’u)(:' =0,1,..,3" - 1), and weight vector is a

<tor of integer-valued functions w (a’, ydayndy)(j =0,],....2" - 1).

finition 2.14 Let the wmimimum value of the o-variable inleger-valued function
4d,,d5,...,d,,), denoted by w™" | be min m; , where lmo,m],...,m J represents the

- vector for w.

0<ig2" 1 2%

lw W ey W]J be the weight vector for an n-variable incompletely specified switching

&rcton f(,l,.xz,..., x,), and w?n be the minimum value for wj(d,,dz,..., d,) where

da,.,d, represent unspecified minterms of £, Let 0<k <2" —1 and a;,dy,....#q € {01}

min . :
neiean Wy - Let ¢ 6,0, be the n-bit binary number

esenting k. Then, {ay,ay,...,ay) represents an assignment of (d,,d,,...,d,) and (¢, ¢3,...¢,,)

= that wk(al,az, , U{)=min

mresents a polarily vector that produces a minimum FPRM for £

T: manipulate integer-valued function a multi-terminal binary decision diagram (MTBDD)
ke 199371 is used. An MTBDD, which is a natural extension of binary decision diagram
D) [Bryant 1986], 1s a directed acyclic graph with multiple terminal nodes each of which has
. ieger value.

rraightforward method to build MTBDDs for weight vector requires excessive computation
> and memory resources, because they represent all possible FPRMs for the given
cmpletely specified function. However, the concentration is in an FPRM with the fewest
2ucts. Suppose there 1s an FPRM for the given function with ¢,,,4,4.1 products, then it is

se--cient to search for an FPRM with f,.0¢ OF fewer products. If such an FPRM does not
& 3 then the FPRM with ¢, 01441 products is the minimum FPRM. Thus, to restrict the search

sgec2 without sacrificing the minimality of the solution, we use threshold value, &y, op014 » during

‘ruction of MTBDDs. The threshold value can be obtained by using any simplification
zram for FPRMs.

Bas=d on the above discussions, an algorithm for exact minimization of FPRM for incompletely
wpesfied n-variable switching function fis developed.

= Implementation of the developed algorithm it is revealed that the factors on which the

ger->utation time mainly depends are the threshold wvalue, the number of variables in the
#esccion, and the number of unspecified minterms. The implementation results shown in this

39

er proves that the algorithm works favorably for many functions with eight or fewer variables
- with any number of unspecified minterms. However, for functions with nine or more
hles it often requires excessive CPU time and memory resources when the number of
wersrocified minterms is more than 30.

40

apter 3
oduction to Application Specific Integrated Circuits (ASICs)

niroduction

t57C is an application-specific integrated circuit. Before knowing what an ASIC is let us
200k at the evolution of the silicon chip or integrated circuit (IC). [Smith 1997]

re 3,1(a) shows an IC package (this is a pin-grid array, or PGA, shown upside down; the
will go through holes in a printed-circuit board). Peopie often call the package a chip, but
3.1(b) shows that the silicon chip itself (more properly called a die) is mounted in the
nv under the sealed lid. A PGA package is usually made from a ceramic material, but plastic
ages are also common.

tgure 3.1: An integrated circuit (IC). (a) A pin-grid array (PGA) package. (b) The silicon die
or chip is under the package lid.

ples of ICs that are not ASICs include standard parts such as: memory chips sold as a
modity item—vread only memory (ROMs), dynamic random-access memory (DRAM), and
RAM (SRAM); microprocessors; transistor-transistor logic (TTL) or TTL-equivalent ICs at
atl-scale integration (SSI), medium-scale integration (MSI), and large-scale integration (LSI)
.-.‘;,.ISI

smples of ICs that are ASICs include: a chip for a toy bear that talks; a chip for a satellite; a
when designed to handle the interface between memory and a microprocessor for a workstation
U, and a chip containing a microprocessor as a cell together with other logic. Two ICs that
ght or might not be considered ASICs are a controller chip for a PC and a chip for a modem.
=th of these examples are specific to an application (shades of an ASIC) but are sold to many
Terent system vendors (shades of a standard part). ASICs such as these are sometimes called
Hication-specific standard products (ASSPs).

41

: Types of ASICs

are made on a thin (a few hundred microns (a micron is 10 ° m) thick), circular silicon
oy, with each wafer holding hundreds of die (sometimes people use dies or dice for the plural
ie). The transistors and wiring are made from many layers (usually between 10 and 15
nct layers) built on top of one another. Each successive mask layer has a pattern that is
ned using a mask similar to a glass photographic slide. The first half-dozen or so layers
n¢ the transistors. The last half-dozen or so layers deline the metal wires between the
sistors (the interconnect).

e different types of ASICs discussed below are,
Full Custom ASICs

= Semicustom ASICs
Programmable ASICs

X1 Full Custom ASICs

: full-custom ASIC an engineer designs some or all of the logic cells, circuits, or layout
specifically for one ASIC. This means the designer abandons the approach of using pretested and
ge=characterized cells for all or part of that design. It makes sense to take this approach only if

=2 are no suitable existing cell libraries available that can be used for the entire design. This
= o=t be because existing cell libraries are not fast enough, or the logic cells are not small
gz -zh or consume too much power. A full-custom design may be needed if the ASIC
-~ nology is new or so specialized that there are no existing cell libraries or because the ASIC is
& specialized that some circuits must be custom designed.

2.2 Semicustom ASICs

S custom ASICs are,
Standard Cell based ASICs
(Gate Array based ASICs

3.2.2.1 Standard-Cell-Based ASICs

sell-based ASIC (cell-based IC, or CBIC) uses predesigned logic cells (AND gates, OR gates,
- “riplexers, and flip-flops, for example) known as standard cells. It is generally accepted that a
"-based ASIC or CBIC means a standard-cell-based ASIC.

-2 standard-cell areas (also called flexible blocks) in a CBIC are bwilt of rows of standard

g=_s-—-like a wall built of bricks. The standard-cell areas may be used in combination with larger
gr=iesigned cells, perhaps microcontrollers or even microprocessors, known as megacells.

42

egacells are also called megafunctions, full-custom blocks, system-level macros (SLMs), fixed
mocks, cores, or Functional Standard Blocks (FSBs).

& ASIC designer defines only the placement of the standard cells and the interconnect in a
BIC. However, the standard cells can be placed anywhere on the silicon; this means that all the
B35k layers of a CBIC are customized and are unique to a particular customer. The advantage of
HE B1Cs 1s that designers save time, money, and reduce risk by using a predesigned, pretested, and
'y precharacterized standard-cell lfibrary. In addition each standard cell can be optimized
;:dmduaiiy During the design of the cell library each and every transistor in every standard cell
ke:n be chosen to maximize speed or mininuze area, for example. The disadvantages are the time
ex expense of designing or buying the standacd-cell library and the time needed to fabricate all
2rs of the ASTC for each new design. Figure 3.2 shows a CBIC.

2 important features of this type of ASIC are as follows:
All mask layers are customized—transistors and interconnect.
Custom blocks can be embedded.

Manufacturing lead time is about cight weeks.

-
=)

stndard-cell §
area o
(W]

0

i

D

fued 9
blocks §

of

Di

u}

| E:
00Rin | ni

500, |NC0000A00C0000C00000C!

Figure 3.2: A cell-based ASIC (CBIC) die with a single standard-cell area (a
flexible block) together with four fixed blocks. The flexible block contains rows
of standard cells. This is the low-powered microscopic look of the die of
Figure 3.1(b). The small squares around the edge of the die are bonding pads that
are connected to the pins of the ASIC package.

Esch standard cell in the library is constructed using full-custom design methods, but these
wr=designed and precharacterized circuits can be used without having to do any full-custom
design. This design style gives the same performance and flexibility advantages of a full-custom
251C but reduces design time and reduces risk.

ndard cells are designed to fit together like bricks in a wall. Figure 3.3 shows an example of a
smple standard cell. Power and ground buses (VDD and GND or VSS) run horizontally on

:al lines inside the cells.

seandard-cell design allows the automation of the process of assembling an ASIC. Groups of
gadard cells fit horizontally together to form rows. The rows stack vertically to form flexible

43

tangular blocks. Then a flexible block built [rom several rows of standard cells is connected to
efer standard-cell blocks or other full-custom logic blocks.

ml
nwell r—cell baunging box
(BB}
comact
neiT
pdiff
metal? e
poly
ndiff
cell shutmem boy
rAR)
pwel —pm
paiff
pdiff
L
14X

Figure 3.3: Looking down on the layout of a standard cell. This cell would be
zoproximately 25 microns wide on an ASIC with | (lambda) = (.25 microns. Standard
iis are stacked like bricks in a wall; the abutment box {AB) defines the “edges” of the
~r:¢k. The difference between the bounding box (BB) and the AB is the area of overlap
~ztween the bricks. Power supplies (labeled VDD and GND) run horizontally inside a
sandard cell on a metal layer that lies above the transistor layers. Each different shaded
zd labeled pattern represents a different layer. This standard cell has center connectors
ithe three squares, labeled A1, B1, and Z) that allow the cell to connect to others.

cell-based and gate-array ASICs use predefined cells, but there is a diffcrence—the
tor sizes in a standard cell can be changed to optimize speed and performance, but the
de--ce sizes In a gate array are fixed. This results in a trade-off in performance and area in a gate
&=y at the silicon level. The trade-off between area and performance is made at the library level
» 2 standard-cell ASIC.

3.2.2.2 Gate Array based ASICs

etimes called a primitive cell). Only the top few layers of metal, which define the
=wconnect between transistors, are dcfined by the designer using custom masks. To distinguish
rype of gate array from other types of gate array, it is often called a masked gate array

£ >4). The designer chooses from a gate-array library of predesigned and precharacterized
koo cells. The logic cells in a gate-array library are often called macros. The reason for this is
s the base-cell layout is the same for each logic cell, and only the interconnect (inside cells

44

ad between cells) is customized, so that therc is a similarity between gate-array macros and a
& Sware macro. There are the following different types of MGA or gate-array—based ASICs:

Channeled gate arrays.
Channelless gale arrays.

Structured gatc arrays.

array uses rows of wnused transistors. The channeled gate array was the first to be
=eloped, but the channclless gate-array architecture is now more widely used. A structured (or
=—nedded) gate array can be either channeied or channelless but it includes (or embeds) a
- custom block.

3.2.2.2.1 Channeled Gate Array

-zure 3.4 shows a channeled gate array. The important features of this type of M(GA are:
-, Only the nterconnect is customized.
The interconnect uses predefined spaces between rows of base cells.

Manufacturing lead time is between two days and two weeks.

Figure 3.4: A channelced gate-array die. The spaces between rows of the base
cells are set aside for interconnect.

& ramncled pate array is similar to a CBIC—both use rows of cells separated by channels used
#r erconncet, One difference is that the space for interconnect between rows of cells are fixed
z =2ight in a channeled gate array, whereas the space between rows of cells may be adjusted in a

S,
. L
A R

32.2.2.2 Channelless Gate Array

a2, or SOG array). The important features of this type of M(GGA are as follows:

¢ 3.5 shows a channelless gate array (also known as a channel-free gate array. sea-of-gates

Only some (the top few) mask layers are customized—-the interconnect.

Manufacturing lead time is between two days and two weeks.

ol CoODoogaoicoaoonon G
- [
o base cell |5
5 e B
|
: i B
0 . [=|
=1 b g
il [w]
g f o
AT O =R

8 base cell 8
E {not all E
|m shown) =
‘0 [w]
¥

CHB 8000000 00000000

Figure 3.5: A channelless gate-array or sea-of-gates (SOG) array die. The core
area of the die is completely filled with an array of base cells (the base array).

key difference between a channelless gate array and channeled gate array is that there are no
defined areas set aside for routing between cclis on a channelless gate array. Instead routing is
e over the top of the gate-array devices. When an area of transistors is used for routing in a
ghannelless array, no contact is made to the devices lying underneath; the transistors are left
gesed.

- logic density— the amount of logic that can be implemented in a given silicon area— is
her for channeliess gatc arrays than for channeled gate arrays. This is usually attributed to the
iFerence in structure between the two types of array. In fact, the difference occurs because the
cantact mask is customized in a channelless gate array, but is not usually customized in a
nneled gate array. This leads to denser cells in the channellcss architectures. Customizing the
tact layer in a channelless gate array allows increasing the density of gate-array cells because
gan route over the top of unused contact sites.

3.2.2.2.3 Structured Gate Array

&z embedded gate array or structured gate array (also known as masterslice or masterimage)
zembines some of the features of CBICs and MGAs. One of the disadvantages of the MGA is the
xed gate-array base cell. This makes the implementation of memory, for example, difficult and
mweificient. [n an embedded gate array some of the IC area is set aside and dedicated to a specific
#amction. This embedded area either can contain a different base cell that is more suitable for
Biding memory cells, or it can contain a complete circuit block, such as a microcontroller.

£:zure 3.6 shows an embedded gate array. The important features of this type of MGA are the
Hilowing:
Only the interconnect is custiomized.

Custom blocks (the same for each design) can be embedded.

Manufacturing fead time is between two days and two weeks.

46

¢ B BI00 DERIG DRO080o0nnn E
a]

embedied [O

tlock - %
&]
] o]
L C
L1]
[m] =]
.0 |
ZC j
O [
[_ =
£ sy of =
O hase cells O
L] {nnt ail o
=] ghuwr) =
ju]]
Q00 300000000000 0000ar?

Figure 3.6: A structured or embedded gale-array die showing an embedded
block in the upper left corner (a static random-access memory, for cxample). The
rest of the die is filled with an array of base cells.

A7 embedded gate array gives the improved arca efficiency and increased performance of a
£3IC but with the lower cost and faster turmaround of an MGA. One disadvantage of an
&mbedded gate array is that the embedded function is fixed. For example, if an embedded gate
may contalns an area set aside for a 32 k-bit memory, but only a 18 k-bit memory is nceded,
#2n half of the embedded memory function is wasted. However, this may still be more efficient
#d cheaper than implementing a 32 k-bit memory using macros on a SOG array.

+5]C vendors may offer several embedded gate array structures containing different memory
pes and sizes as well as a variety of embedded functions. ASIC companies wishing to offer a
#».de range of embedded functions must ensure that enough customers use each different
~bedded gate array to give the cost advantages over a custom gate array or CBIC.

3.2.3 Programmable ASICs

“me programmable ASICs are,
i. Programmable Logic Devices (PLDs)
1. Field Programmable Gate Arrays (FPGAs)

2.2.3.1 Programmable Logic Devices

Zrogrammable logic devices (PLDs) are standard ICs that are available in standard
sonfigurations from a catalog of parts and are sold in very high volume to many different
sstomers, However, PLDs may be configured or programmed to create a part customized to a
¢ecific application, and so they also belong to the family of ASICs. PL.Ds use different
-chnologies to allow programming of the device. Figure 3.7 shows a PLD and the following
mportant features that all P1.Ds have in common.

Co

i. No customized mask layers or logic cells
1. Fast design tumaround

:ii. A single Jarge block of programmable interconnect

47

A matrix of logic macrocells that usually consist of programmable array logic followed by
a flip-flop or latch

‘1 O 0000000000 000 O

=]]

m] 2

3 g

-~

macrocsll |2 3

| ju}

Tl [m]

- a

] o

L] 9]

L 5]

- (=

: :

a] o]

programm abf{g =
imemonnest |f o
[Sials[e]u]us]sinin{sfs]nin[rfi[w[s[n]=f=s

Figure 3.7 A programmable logic device (PLD) die. The macrocells typically
consist of programmable array logic followed by a flip-flop or latch. The
macrocells are connected using a large programmable interconnect block.

“he simplest type of programmable IC is a read-only memory (ROM). The most common types
ROM use a metal fusc that can be blown permanently (a programmable ROM or PROM). An
slectrically programmable ROM, or EPROM, uses programmable MOS transistors whosc
haracteristics are altered by applying a high voltage. An EPROM can be erased either by using
another high voltage (an electrically erasable PROM, or EEPROM) or by cxposing the device to
zltraviolet light (UV-erasable PROM, or UVPROM).

There 15 another type of ROM that can be placed on any ASIC—a mask-programmable ROM
mask-programmed ROM or masked ROM). A masked ROM is a regular array of transistors
~ermanently programmed using custom mask patterns. An embedded masked ROM is thus a
.arge, specialized, logic cell.

The same programmablc technologies uscd to make ROMs can be applied to more flexible logic
zructurcs. By using the programmable devices in a large array of AND gates and an array of OR
zates, a family of flexible and programmable logic devices called logic arrays are created. The
Programmable Array Logic device produced first can be used, for example, as transition
facoders for state machines. A PAL can also include registers (flip-flops) to store the current
siate information so a PAL can be used to make a complete state machine.

just as a mask-programmable ROM, a logic array can be placed as a cell on a custom ASIC. This
ope of logic array is called a programmable logic array (PLA). There is a difference between a
- PAL and a PLA: a PLA has a programmable AND logic array, or AND piane, followed by a
srogrammable OR logic array, or OR plane; a PAL has a programmable AND plane and, in
sontrast to a PLA, a fixed OR plane.

Depending on how the PLD is programmed, there is an erasable PLI) (EPLD), or mask-
~rogrammed PLD (sometimes called a masked PLD but usually just PLD).

48

:: 2.3.1 Field-Programmable Gate Arrays

step above the PLD in complexity is the field-programmable gate array (FPGA). There is very
#tle difference between an FPGA and a PLD--an FPGA is usually just larger and more
komplex than a PLD. In fact, some companies that manufacture programmable ASI{Cs call their
products FPGAs and some call them complex PLDs. FPGAs are the newest member of the ASIC
family and are rapidly growing in importance, replacing TTL in microelectronic systems. Even
dhough an FPGA is a type of gate array, we do not consider the term gate-array—based ASICs to
anclude FPGAS.

1. Nene of the mask layers are customized.
A method for programming the basic logic cells and the interconnect.

The core is a regular array of programmable basic logic cells that can implement
combinational as well as sequential logic (flip-flops).

A matrix of programmable interconnect surrounds the basic logic ceils.
Programmable /O cells surround the core.

Design turnaround is a few hours.

g 00000000 00asoaacnnr &

rogramm able |2 a
g ! g 3
HS]C ogic C1 B
L i

£ [m

i o

[]

= i)

M =]

3 i

L .0

= :E

O 0

- 0

O =0

O ;g

programm able | ﬁ EE
inteiconnect Q0002000000 0000000

Figure 3.8: A field-programmable gate array (FPGA) die. All FPGAs contain a regular
ructure of programmable basic logic cells surrounded by programmable interconnect.
The exact type, size, and number of the programmable basic logic cells varies
tremendously.

3 Design Flow

zure 3.9 shows the sequence of steps to design an ASIC, a design flow. The steps are listed
low (numbered to correspond to the labels in Figure 3.9) with a brief description of the
#znction of each step.

Design entry: The design is entered into an ASIC design system, either using a hardware
description language (HDL) or schematic entry.

49

stant |
¥

prelaf'o_ut design entry logicail
sin viton a - design
- . /

F3 T \VHDU\kﬁiog

system

patttinning e

mm p_ns'lilay_cut feompbhnmng

: s ulatian

- W

moc o Q

4

placement

rw":j{_——ﬂ c'rg;l‘it_ Fouting (EH-LH / 5222?'
axtaction H
-
backannotated I)
netlist frieh

Figure 3.9: ASIC design flow.

@
=
=

lagic cells

1. Logic synthesis: An 1IDL (VIDL or Verilog) and a logic synthesis tool is used to produce
a netlist —a description of the logic cells and their connections.

it System partitioning: A large svstem is divided into ASIC-sized pieces.

iv. Prelayout simulation: The design functions correctness is checked.

v. Floorplanning: The blocks of the netlist are arranged on the chip.

vi. Placement: The locations of cells in a block are decided.

vil. Routing: The connections between cells and blocks are made.

viit. Extraction: The resistance and capacitance of the interconnect are determined.

1X. Postlayout simulation: Check to see the design still works with the added loads of the
interconnect.

Steps 14 are part of /ogical design, and steps 5-9 are part of physical design. There is some
overlap. For example, system partitioning might be considered as either logical or physical
Jesign. To put it another way, when system partitioning, is performed both logical and physical
-actors has to be considered.

50

Chapter 4
RTL level Architecture of the developed ASIC for FPRM Minimization

1 Basics of Register Transfer Logic

digital system is a sequential logic circuit constructed with flip-flops and gates. Normally,
sequential circuits are specified with state tables. Specifying a large digital system with a state
nle is very difficult, because the number of states would be very large. To overcome this
g Hculty digital systems are designed using a modular approach. The system is partitioned into
odular subsystems, each of which performs some functional tasks. The modules are
genstructed from digital devices like registers, decoders, multiplexers, arithmetic elements, and
gontrol Jogic, The various modules are interconnected with common data and control paths to
mm a digital system. These modules are described by a set of registers and the operations
performed on the information stored in them, The information flow and processing performed on
e data stored in the registers are referred to as register transfer operations. A digital system
1gned around registers is referred to as the register transfer logic {(RTL).

register transfer logic (RTL) level digital system is specified by the following three
mponents:

A set of registers in the system.
The operations performed on the data stored in the registers.

The control for supervising the sequence of operations in the system.

4.2 Computation of the positive and negative Davio expansions

Tre positive and negative Davio expansions are as below,

"i_r,,,\’z, .,.,x,,)=f0 ®xifz (pD)
X%,)= fy DX, f5 (D)

nere, fo= /{500 % 50,5000,), Si= S (XX L x000x,) and = @ £

hese expansions can be computed as shown in Figure 4.1 for a 3-variable function.

51

Bit Boolean
position Coefticient *

| il . i o

{a) Application of pD expansion

Bit Boolean
position Coefficient

| ooy b 4--->“ ' I
_ — N — .* _:
R | I I

nD on x, nD on x, nD on g,

ET P R 1

(b) Application of nD expansion

Figure 4.1: Computation of pD and n> expansions for a 3-variable tfunction

::i-'igure 4.1 the computation of the expansions on each variable for both positive and negative
rio expansions are shown. Figure 4.1 (a) shows the computation of the cofactors when the pD
gpansion is used for each variable x;, x, and x;. Figure 4.1 (b) shows the computation of
j:ctors when the nD expansion is used for each variable x|, x, and x;. In this work the

fpansions are used on the variables in the similar approach shown in Figure 4.1 depending on
e polarity of the variables. If the polarity is 0 then pD expansion is used and if the polarity is 1
pr the nD expansion is used.

52

Bit Boolean pDon nD on pD on
position Cocefficient

300 I.
01 9
................... i
019 0 ‘
e ! | :

111 0

sxample, for a function __f(A, B, C) the input vector b = [1, 0,0,1,1,0,1, O]T and polarity
- - cp = [O, L, O] then the transformations on each variable are shown in Figure 4.2. Here, the
:tv of variable 4 is 0, B is 1 and C is 0, respectively. So the transformation on 4 and C is
pe using pD expansion and the transformation on B is done using 70 expansion. The last
o1 gives the FPRM coefticients of the given function for polarity vector [0, 1, 0].

B RTL design of the developed ASIC for FPRM minimization

RTL design of the developed ASIC for minimizing FPRM expressions is shown in Figure

Clock -
Start » -

4 I

Clock 4

Figure 4.3: The block diagram of the developed ASIC to minimize FPRM expressions

LA
L)

Figure 4.3 is a block diagram minimizes FPRM expressions for 3-variable finactions. The eight
- input coefficients b...h; are applied to the inputs of the FPRM converter convert. Figure 4.4

B shows the block diagram of the converter. The converter consists of 7.2"71 2-to-1 multiplexers
2 and the same number of EXOR gates where » is the number of variables in the function. The

B converter also has 2" number of (n+1)-to-1 multiplexers. Here, the polarity vector of an FPRM

expression works as address lines of the 2-to-1 multiplexers. And thus provide either pD or nD

B c<xpansion on each variable. Here, if the value of polarity c¢p; where0 <i<n-1 is O then pD

| expansion is used and if the value of polarity cp; whereO <i<n—1 is 1 then nD expansion is
used.

As the address lincs to the 2-to-1 multiplexers are the polarity vector cp;, the valuc of ¢p;
multiplexes the input lines to the outputs of the converter. For the first variable, if ¢p, =0 then
the 2" inputs go directly to the converter output register ¢ (0... 2"71.1) and the EXOR of the,
rest 2"~ inputs and the first 2"~ inputs, go to z7(2" ... 2"-1). If ¢p, =1, then the EXOR of the
first 2"~ and last 2" inputs go to the register /7 (2" ...2"-1) and the last 2" inputs go to
r(0...2"1-1) directly. In this way, for the second variable the inputs to the 2-to-1 multiplexers

are the values of the vector #r. Now, if ¢p; =0 then (0...2"

register 70... 2"7>-1) and the EXOR of (0...2"7%-1) and (2"72...(2"2+2"72-1)) inputs go to
(2772 (2"72+2"72.1)). Accordingly, the transformations on the other variables are done.

-1) of inputs go directly to the

54

cpl cp0 clcOStart
Clock

Clock

bo % 3 = N
i P Y Pr
: L 0~ L i
M L~ . SR
} = l " .
- i \l N | ! tr0
: - 1. : :
[B :
b}
»
* | trl
L X 1
. ..
b2 —
o
T tr2
b3 - L G
i L T~
* 1. 1 '__.

;RCS s tr3

b4 -~
N [S
T~ trd

b5 —

~ o
4= trs
. ——— .1/?
. .
Ll -
b6 -
i f— _\Ir .
" — 5o
| Lo tr6
: . >
E /', 1
b7 1t } —
! 1._\\.. |
I B — ,) ‘7
[» S - 27
i S
| ; = LA
(SRR AL

Figure 4.4: The converter

¢ convert produces 2" bit FPRM coefficients for each polarity vector. For an n variable

Fenction we have 2" polarity vectors and thus 2" sets of FPRM coefficients.

PCtr and SCrr are three bit and two bit counters, respectively. PCtr provides 2” numbers of # bit
polarity vectors to convert. For a three variable function the converter takes four states to
zenerate FPRM coefficients, where SCtr counts states for each polarity vector. At the first state
me inputs are loaded into the converter, and then at each three of the following states the
ransformation on each vartable is done. That is, for an # variable function it will need n+1 states
ror the converter to generate FPRM coefficients for a particular polarity vector.

The CRReg is a 2" bit register which initially holds 2” 1’s. Then after the generation of each set
of FPRM coefficients CRReg is loaded with the FPRM coefficients. That is, the converter passes
the FPRM coefficients to CRReg.

The adder in the diagram i1s a module that adds the bits of the FPRM coefficients to determine
the number of 1’s in the FPRM coefficients. As we are intended to find the FPRM expressions
with least number of product terms thus least number of 1’s, we keep record of number of 1’s in
rach set of FPRM coefficients. The adder computes the number of 1’s in the FPRM coefficients
for each polarity vector.

The register RReg in the design holds a set of FPRM coefficients which has the least number of
1’s. If the i-th polarity vector produces FPRM coefficients which has lesser number of 1’s than
he FPRM coefficignts produced by the 7+ /-th polarity then RReg holds the FPRM coefficients
produced by the /-th polarity.

Another register CPReg holds the polarity vectors. When the converter computes the FPRM
oefficients for a polarity vector then CPReg is loaded with the next polarity vector.

PReg register holds the value of the polarity which produces FPRM coefficients with least
number of 1’s. The process of keeping record of the polarity vector is the same as the process
which stores the FPRM coeffictents with least number of 1’s in RReg.

The register SReg holds the value of number of 1’s in the FPRM coefficients, Initially this

' register is loaded with the value of 2", as the FPRM coefficients can have at most 2" 1’s for an
n variable function. Again the process of storing this value is same as the process which stores
the FPRM coetficients with least number of 1°s in RReg.

- The ecmp module used in the design is a comparator. This module compares the number of 1’s in
the FPRM coefficients produced by the polarity vector being used presently (cs) with the FPRM
coefficients’ number of 1’s (s) produced by some other polarity vectors previously. If ¢s <s
then the output of cmp (the line /7) goes high. This /¢ enables the registers RReg, PReg and SReg.

56

fter the computation of FPRM coefficients for 2" polarity vectors we get the FPRM
oefficients with the minimum number of 1’s (r) in register RReg, the polarity vector (p) which

roduced r in register PReg and we get the number of 1’s in 7 in register SReg.

\ll of the flip-flops used here are positive edge-triggered. And the total process is reset with the

wegative edge of start.

The transition between states is shown in Figure 4.5.

e
cled~— 00 A 01 K 10

o e
cp2A epd — 000000 Y 000001
L S
it l"-.{f load 3/ expon \‘-;’f exp on ‘-\){-’ cxp on i current update
at i 1 I ;
it by by J_.-"‘\.: X, SR v x4y result S result
/ load ""-.r-“' exp on \‘,-' expon \f expon ""'KF
b by X % s

Figure 4.5: The pipelining of the minimization process

4.4 The ASM Chart of the developed design for FPRM Minimization

LORURD ST T G N ST

The ASM chart of the developed design for FPRM minimization is shown in Figure 4.6. As long
as the eircuit is in the initial state and the start signal is in the logic high, no action occurs and the
systern remains in the initial state. When the start signal goes to logic low then with the sensing
of the negative edge of this signal the system starts to operate and goes to the next state. In this
state the polarity counter, state counter, CRReg, SReg, the output register of the converter tr, and

the input register of the converter b, are initialized.

In each state the state counter is incremented and the input of the converter is loaded with the
coefficients of the input function. In the next three states the expansion on variables x,, x, and

x, 1s done respectively. In the next state the polarity counter is incremented; the output of the
converter tr is loaded to the register cr and the register tp is loaded with the polarity value of the

previous polarity counter.

57

Tl

start < 1
cp(2:0]«0
c[1:0] «-0
ct[7:0] «~ 11111111
s[3:0] « 1111
tr[7:0] « 00000000
b[7:0] «- input

L

T2 l

c[1:0] «-c[1:0}+1 (mod4) |
b[7'0] «- input

T3 JL

o[t 0] <—¢[1:0}+! {m0d4}
b{7:0] « input
‘tr 7: 0] < eXpansion on x,

}u[i 0] «¢f1 O] (m0d4)
{ b[7:0] « input
tr[7:0] <~ expansion on x3 !

B
Figure 4.6: The ASM chart of the developed design for FPRM minimization

58

®
¢f1:0] €=c[1:0]+1 {mod4) 4
cp[1:0] «—cp[1:0]+1 (mod§
b[7:0] « input
cr[7:0}- tr[7:0]
tp[2:0)¢-cp[2:0]

c[1:0} «c[1:0}+1 (modd)
b[7:0} « input

tr[7:0] <— expansion on x,

es{3:0)«cr[0]+cr[1]+cr[2]+er[3]+cr[4Fcrf S +er[6]+crf 7]

] Yes
. A

70 af7:0) T
4 p[2:0] ¢ cp[2:0])
S s13:01 «cs{3:0] -

e

Figure 4.6: Continued

- In the next state the expansion on x, for the current polarity vector is done and the FPRM
- coefficients generated by the counter are added to get the no of 1s in the FPRM coefficients and
the value is stored in cs. The cs value is compared with the value of the SReg (s). If the
comparison gives true value then the registers r (RReg), p (PReg) and s (SReg) are updated with
the FPRM coefficients, the previous polarity and the value of number of 1’s in the FPRM

coefficients, respectively. If the comparison gives the false value then the control goes to state
T3.

59

Chapter §
FPGA Implementation of the ASIC for FPRM Minimization

5.1 Aspects of using FPGA

Figure 5.1: An Altera FPGA with 20,000 cells

We have discussed different types ot ASICs in chapter 3 elaborately.

An FPGA 1s similar to a Programmable Logic Device, but whereas PLDs are generally limited to
hundreds of gates, FPGAs support thousands of gates. They are especially popular for
prototyping integrated circuit designs. Additionally, they take shorter time to market, ability to
re-program in the field to fix bugs, and lower non-recurring engineering costs.

5.2 How FPGAs work

To define the behavior of the FPGA the user provides a hardware description language (HDL) or
a schematic design. Common HDLs are VHDL and Verilog. Then, using an electronic design
automation tool, a technology-mapped netlist is generated. The netlist can then be fitted to the
actual FPGA architecture using a process called place-and-route, usually performed by the
FPGA company's proprietary place-and-route software, The user will validate the map, place and
route results via timing analysis, simulation, and other verification methodologies. Once the
design and validation process is complete, the binary file generated (also using the FPGA
company's proprietary software) is used to (re)configure the FPGA device.

60

n a typical design flow, an FPGA application developer will simulate the design at multiple
tages throughout the design process. Initially the RTL description in VHDL or Verilog is
imulated by creating test benches to stimulate the system and observe results. Then, after the
;jynthesis engine has mapped the design to a netlist, the netlist is translated to a gate level
Jescription where simulation is repeated to confirm the synthesis proceeded without errors.
“inally the design is laid out in the FPGA at which point propagation delays can be added and
the simulation run again with these values back-annotated onto the netlist.

To describe the developed design we have used Verilog as the HDL and the Quartus II 4.2
software to synthesize the design.

Compilation Reports:

Clock Set'upﬁ i
time

o _fmax)

,: 124.62 MHz

! Cyclone | EPIC6Q240C8 | 89/5,980(1 %) | {peried =7.715

‘ . _nms)]
140.17 MHz

Total iogic

Family i
‘ amuy Device efements

e I — —

Cyclone | EP1C6Q24017 | 89/5,980 (1 %) | (period = 7.134

i

:

1 b e ___ms)
1

|

|) 8779 MHz
‘ Cyclone IT | EP2C5Q208C6 | 86/4,608 (1%) | (period = 5.325
ns)

e m——— -

g 182.08 MHz
Cyclone Il | EP2C5T144C6 | 85/4,608 (1 %) (period = 5492
-‘- ns)

The Compilation Report provides a lot of information that may be of interest to the designer. It
indicates the speed of the implemented circuit. A good measure of the speed is the maximum
frequency at which the circuit can be clocked, referred to as finax. This measure depends on the
longest delay along any path between two registers clocked by the same clock. The maximum
frequency for our ctrcuit implemented on the specified chip for the device EP1C6Q240C8 is

129.62 MHz.
The simulation results for two input functions are shown below.
Here, the signal 4 is the minterm coefficients of the input function

signal r is the FPRM coeffeients
signal p is the polarity vector corresponding to # that produces A4

signal s shows the value of no. of I’s in »

61

Master Time Ba. . S [" tndervat 000w Sl Ene:

J

[rfefejelejeieeiglelaie]e|e]c et ele]e

O ne

R __._._'_'iUJ-Ui’._._ _._ Lo T
: mmmﬂ‘ SR SO B 117
S

.1__’_: ey

Figure 5.2: The timing simulation waveform for input function 1, 1,0, 0,0, 0, 0, O]T

[Simag atton Vavefarms ;. .. ERe

Maste) Teme Bar| B0 O ms . ‘['jPoin!e«: ' iotmrvat Stast End.

|& % [ts,[E-l%”f%}@.]%Lﬂfl%l%[% Rlejglolkiglsin]g]

F ot 800 1800 ne ESUJ.G ¥ G 4000 s 4525 ne EEQ.U s . 5400 na
% G‘ b e T T LT e BT i

aJ'I.I_l rL"l.l’L.’“LJ_LJ'LJ—U'I__U_I J'L J"II_W r Agh J’U‘U‘LJ"L_I" J"I.fu_i L

—OOGBT
mar T '_ - .QG.‘LM ___n.__. X il W"’f‘ - S D"_ﬁﬁ'ﬁ

e e —_— — .

I_,I_I_—E_,.I_J_LL.F%H
|'_
!
|
|
!
|
|
|
|

e

]
} a

,._ ._;__._..

Figure 5.3: The functional simulation waveform for input function [1, 1,0, 0, 0, 0, 0, O]T

62

B0 s R Ops nterval B0 0 Beart., T e

(8 felefeele e fels oo e & e e e fete el

il
P[]

503
— 5[]
=41
Lgn

Bt

[n b 0.0 s 1560 s 200m JO0me AT MODe BEOGes S4dCrs 700rs ¢

AT 0w K T L oo mmh T Tl
L T
© r‘j) D R i N

Figure 5.4: The.t.il.nin.g sinnﬂétion Wavéform for input 'ﬁl.n'ct:ion [0, 1, d, l; 0, 1,'0, I]T.

Simulation Wavelnems A
Maste V.7 B B0 Ons "- Forter BH Ikl FER M Siart: £nd
BN B0 s 160 ne 2400ns 300 4030 m 480 0 ns FEC0r: 5e0,0 e e
_ e.-'i'; PR et i e e O N b Ot MNP ol et bl SO
ey clock EpigSyiguguy ’_LJ Epipipiipupigs; _J_U-L—UT_I"LFL"'LF |_|"' EylgtyiySguygipipipigiyl
o sl [
=l wa =S o _.._____.___..._:_____.._ -- \'31 ‘_D‘I‘J o e e
&l m. @/:_—_ 11.\1 g X_—__— = ——_: - e e - ..'———.%.*
. 7] & R _ —
b | L~ g8y | i o — e
oy —I5; | :
[] [‘=|"i | i — - —
hid it : 1 e I
o L ! PR -
= : S S
el 1 L . .
A (3 J . —_———— — ———— .
| ' = T R S] T T
= & e e

Figure 5.5: The functional simulation waveform for input function [[0, 1,0, 1, 0, 1, 0, I}T

63

Chapter 6
Discussion and Conclusion

6.1 Discussion and Conclusion

AND-EXOR logic, which is also known as Reed-Muller logic, is now a days very popular for
many reasons. There are seven types of AND-EXOR logic expressions, among them Fixed
Polarity Reed-Muller (FPRM) expression is one type. This type has the property that the polarity
of a variable remains same throughout the expression, which eases the implementation of the

expression in VLS. For an n-variable function, there are 2" possible FPRM expressions having
different number of products and number of literals. So, finding out the minimum FPRM
expression for a given Boolean function is very important.

There are many software methods for FPRM minimization. In this work an approach to
minimize FPRM expressions using hardware and implemented in FPGA has been outlined. In
real life problems finding Boolean equivalence of a function is important. The FPRM
representation is a tool to find Boolean equivalence or Boolean matching. Our designed ASIC
will provide the FPRM coefficients and the optimum polarity vector for a particular Boolean
function of three variables.

Many software approaches are available to minimize FPRM expressions. But for real time
problems the software approaches are not applicable as they all take exponential time for
computation. The ASIC will take constant time to generate FPRM coefficients. For this reason
researchers focused on minimizing FPRM expressions using hardware.

6.2 Further Works

This design is able to minimize FPRM expressions of three variable single-output, fully-
specified functions. Further works may include,

i. To parameterize the design so that the number of variables the ASIC can handle is .
ii. Todevelop the design for handling multi-output and incompletely specified functions.

iii. To develop the design for optimization of other AND-EXOR expressions such as pseudo
Reed-Muller, Kronecker, pseudo Kronecker, etc.

64

References

[Almaini 1996] A. E. A. Almaini and K. Bumside, October 1996, “Generalised Reed-Muller
ASIC converter”, The 2" Int. Conf. on ASIC, China.

[Almaini 1997] A. E. A. Almaini, 1997, “A semicustom IC for generating optimum generalized
Reed-Muller expansions”, Microelectronics Journal, 28(2), 129-142.

[Besslich 1985] Ph. W. Besslich, 1985, “Spectral processing of switching functions using signal-
flow transformations”, in (M. Karpovsky ed.) Spectral Techniques and Fault
Detection, (Orlando, FL: Academic Press), 91-141.

[Bryant 1986] R. E. Bryant, Aug 1986 “Graph-based algorithms for Boolean function
manipulation,” JEEE Trans. Comput., Vol. C-35, No. 8, pp. 677-691.

[Clarke 1993] E. M. Clarke, K. L. McMillan, X. Zhao, M. Fuyjita, and J. Yang, June 1993,
“Spectral transforms for large Boolean functions with applications to technology
mapping,” Proc. Design Automation Conference, pp. 54-60.

[Damarla 1989] T. R. Damarla and M. Karpovsky, 1989, “Fault detection in combinational

networks by Reed-Muller transformations”, /EEE Transaction on Computers, C-
38, 788-797.

[Davio 1978] M. Davio, J. P. Deschamps, and A. Thayse, 1978, “Discrete and Switching
Functions”, (McGraw-Hill International).

[Davis 1991] L. Davis, 1991, “Handbook of Genetic Algorithms”, van Nostrand Reinhold, New
York.

[Debnath 1995] D. Debnath and T. Sasao, 1995, “GRMIN: a heuristic simplification algorithm
for generalized Reed-Muller expressions”, [FIP WG 10.5 Workshop on
Applications of the Reed-Muller Expansion in Circuit Design.

[Debnath 2000] D. Debnath and T. Sasao, 2000, "Exact minimization of fixed polarity Reed-
Muller expressions for incompletely specified functions," Asia and South Pacific
Design Automation Conference (ASP-DAC’2000), Y okohama, Japan, pp.247-252.

[Drechsler 1994] R. Drechsler, M. Theobald, and B. Becker, 1994, “Fast OFDD based
minimization of fixed polarity Reed-Muller expressions” FEuropean Design
Automation Conf., pp. 2-7.

[Drechsler 1995] R. Drechsler, B. Becker, and N. Gé6ckel, April, 1995 “A Genetic Algorithm for
minimization of Fixed Polarity Reed-Muller expressions”, International
Conference on Artificial Neural Networks and Genetic Algorithms, pages 392-
395, Ales.

65

[Drechsler 1996] R. Drechsler, M. Theobald, and B. Becker, Nov., 1996, “Fast OFDD based
minimization of fixed polarity Reed-Muller expressions” [EEE Trans. Comput.,
Vol. C-45, No. 11, pp. 1294-1299.

[Drechsler 1997] R. Drechsler and B. Becker, Jan. 1997, “Sympathy: Fast Exact Minimization of
Fixed Polarity Reed-Muller Expressions for Symmetric Functions.” /EEE Trans.
CAD, Vol. 16, #1, pp. 1-5.

[Fisher 1974] L. T. Fisher, 1974, “Unateness properties of AND-EXCLUSIVE-OR logic
circuits”, IEEE Transaction on Computers, 23, 166-172.

[Fleisher 1983] H. Fleisher, M. Tavel, and J. Yeager, 1983, “Exclusive-OR representations of
Boolean functions”, IBM Journal of Research and Development, 27, 412-416.

[Fujiwara 1985] H. Fujiwara, 1985, “Logic testing and Design for Testability”, (The MIT Press,
Cambridge).

[Goldberg 1989] D. E. Goldberg, 1989, “Genetic Algorithms in Search, Optimization, and
Machine Learming”, Reading, MA: Addison-Wesley.

[Green 1976] D. H. Green and 1. S. Taylor, 1976, “Multiple-valued switching circuit design by
means of generalized Reed-Muller expansions”, Digital Process, 2, 63-81.

[Green 1987] P). H. Green, 1987, “Reed-Muller expansions of incompletely specified functions”,
IEEE Proceedings on Computers and Digital Techniques, 134, 228-236.

[Green 1991] D. H. Green, 1991, “Families of Reed-Muller canonical forms”, International
Journal of Electronics, 63(2), 259-280.

[Harking 1990] B. Harking, 1990, “Efficient algorithm for canonical Reed-Muller expansions of
Boolean functions”, [EEE Proceeding on Computers and Digital Technigues,
137(5), 366-370.

[Helliwell 1988] M. Helliwell and M. Perkowski, 1988, “A fast algorithm to minimize multi-
output mixed-polarity generalized Reed-Muller forms”, Proceeding of the 25t
Design Automation Conference, 427-432.

[Hirayama 2001] T. Hirayama, K. Nagasawa, Y. Nishitani and K. Shimizu, 2001, “Double fixed-
polarity Reed-Muller expressions: a new class of AND-EXOR expressions for
compact and testable realization”, IPSJ Journal, vol. 42 no. 4, pp. 983-991.

[Khan 1997] M. M. H. A. Khan and M. S. Alam, 1997, “Mapping of fixed polarity Reed-Muller

coefficients from minterms, and the minimization of fixed polarity Reed-Muller
expressions”, International Journal of Electronics, 83(2), 235-247.

66

Kebschull 1993} U. Kebschull and W. Rosenstiel, Feb. 1993, “Efficient Graph-Based
Computation and Manipulation of Functional Decision Diagrams”, Proc.
European Design Automation Conf. 93, pp. 278-282.

Mukhopadhyay 1970] A. Mukhopadhyay and G. Schmitz, 1970, “Minimization of exclusive
OR and logical equivalence of switching circuits”, [EEE Transaction on
Computer, (C-19, 132-140.

(Reddy 1972] S. M. Reddy, 1972, “Easily Testable realization for logic functions”, [EEL
Transaction on Computer, C-21(11), 1182-1188.

[Rollwage 1993] U. Rollwage, 1993, “The complexity of mod-2 sum PLA’s for symmetric
functions”, IFIP 10.5 Workshop on Applications of the Reed-Muller Expansion in
Circuit Design.

[Saluja 1975] K. K. Saluja and S. M. Reddy, 1975, “Fault detecting test set for Reed-Muller
canonic networks”, /EEE Transaction on Computers, C-24(10), 995-998.

[Sarabi 1992] Sarabi and M. A. Perkowski, 1992, “Fast exact and quast-minimal minimization of
highly testable fixed polarity AND/XOR canonical networks”, Proceeding of the
29" Design Automation Conference 1992, Anaheim, CA, 30-35.

[Saul 1992] J. Saul, 1992,“Logic Synthesis for Arithmetic Circuits Using the Reed-Muller
Representation”, Proc. EDAC-EuroASIC, pp.109-113.

[Schafer 1991] I. Schafer and M. A. Perkowski, May 1991, “Multiple-Valued Input Generalized
Reed-Muller Forms”, Proc. Of ISMVL 91, pp. 40-48.

[Sasao 1991] T. Sasao, 1991, Oct. 1991, “On the complexity of some classes of AND-EXOR
expressions”, I/ECE Technical Report FTS 91-35.

[Sasao 1993a] T. Sasao, 1993a, “AND-EXOR Expressions and their Optimization”, in “Logic
Synthesis and Optimization”, (Kluwer Academic Publisher), 287-312.

[Sasao 1993b] T. Sasao, 1993b, “EXMIN2: A simplification algorithra for exclusive-OR sum of
products expressions for multiple-valued input two-valued output functions”,
IEEFE Transaction on Computer Aided Design of Integrated Circuits and Systems,
12(5), 621-632.

[Sasao 1994] T. Sasao, 1994, “Easily testable realization for generalized Reed-Muller
expression”, JEEL the 3 Asian Test symposium, November 15-17, 1994, Nara,
Japan, 157-162.

[Sasao 1995] T. Sasao, August 1995, “Representation of Logic Functions using EXOR

Operations”, Proceeding of [FIP WG 10.5 Workshop on the Applications of the
Reed-Muller Expansion in Circuit Design, Chiba, Japan, 11-20.

67

[Sasao 1996] T. Sasao and F. Izuhara, 1996, “Exact minimization of FPRMs using multi-
terminal EXOR TDDs,” in T. Sasao and M. Fujita, eds., Representations of
Discrete Functions, Kluwer Academic Publishers.

[Sasao 1997] T. Sasao, 1997, “Easily testable realizations for generalized Reed-Muller
expressions”, [EEE Transaction on Computers, 46(6), 709-716.

[Smith 1997] M. J. S. Smith, June 1997, “Application-Specific Integrated Circuits”, Addison-
Wesley Publishing Company VLSI Design Series.

[Toida 1992] S. Toida and N. 5. V. Rao, 1992, “On test generation for combinational circuits
consisting of AND and XOR gates”, Digest of Papers of 1992 IEEE VLSI Test
Symposium. Design, Test and Application. ASICs and Systems-on-a-chip, 113-
118.

[Tsai 1994a] C. -C. Tsai and M. Marek-Sadawska, 1994a, “Boolean Matching using generalized
Reed-Muller forms”, Proceeding of the 31 ACM/IEEE Design Automation
Conference, 339-344.

[Tsai 1994b] C. -C, Tsai and M. Marek-Sadawska, 1994b, Minimization of fixed polarity
AND/XOR canonical networks, IEEE Proceedings on Computer and Digital
Techniques, 141, 369-374.

[Tsai 1996] C. -C. Tsal and M. Marek-Sadawska, 1996, “Generalized Reed-Muller forms as a
tool to detect symmetries”, [EEE Transaction on Computers, C-45, 33-40).

[Tsai 1997] C. -C. Tsai and M. Marek-Sadawska, 1997, “Boolean functions classifications via
fixed polarity Reed-Muller forms”, /EEE Transaction on Computers, C-46(2),
173-186.

[Varma 1991] D. Varma and E. A. Trachtenberg, 1991, “Computation of Reed-Muller
Expansions of Incompletely Specified Boolean Functions From Reduced
Representations”, Proc. of IEE, Vol. 138, Part E, No. 2, pp. 85-92.

[Wu 1982] X, Wu, X. Chen and S.L. Hurst, January 1982, “Mapping of Reed-Muller

Coefficients and the Minimisation of Exclusive OR Switching Functions”, Proc
IEE, vol.129, Pt.E, No.l.

68

