
A new string matching algorithm for
analyzing university curriculum with

respect to current job circular

MD. Obaidullah Al-Faruk

ID: 2013-2-60-038

K.M. Akib Hussain

ID: 2013-2-60-045

MD. Adnan Shahriar

ID: 2013-1-68-046

A thesis submitted in partial fulfillment of the requirements for the

degree of Bachelor of Science in Computer Science and Engineering

Department of Computer Science and Engineering
East West University

Dhaka-1212, Bangladesh

May , 2018

Declaration

We, hereby, declare that the work presented in this thesis is the outcome of our united

efforts and under the wonderful support and supervision of our honorable supervisor

Shakila Mahjabin Tonni, Lecturer, Department of Computer Science and Engineering,

East West University. We also declare that no part of this thesis done under CSE497 has

been or is being submitted elsewhere for the requirement of any degree or diploma other

than publication and journal purpose.

Supervisor

.

(Shakila Mahjabin Tonni)

Lecturer,

Dept. of Computer Science and Engineering

East West University, Dhaka, Bangladesh.

Students

.

(MD. Obaidullah Al-Faruk)

(ID: 2013-2-60-038)

. .

(K.M. Akib Hussain)

(ID: 2013-2-60-045)

. .

(MD. Adnan Shahriar)

(ID: 2013-1-68-046)

i

Letter of Acceptance

I hereby acknowledge that this Thesis Report has been submitted by MD. Obaidullah

Al-Faruk (ID: 2013-2-60-038), K.M. Akib Hussain (ID: 2013-2-60-045) and MD. Adnan

Shahriar (ID: 2013-1-68-046), to the Department of Computer Science and Engineering,

East West University, Dhaka, Bangladesh, and is accepted by the department in partial

fulfillment of requirements for the Award of the Degree of Bachelor of Science and

Engineering on April, 2018.

Supervisor

. .

(Shakila Mahjabin Tonni)

Lecturer, Department of Computer Science and Engineering

East West University, Dhaka, Bangladesh.

Chairperson

. .

(Dr. Ahmed Wasif Reza)

Chairperson and Associate Professor,

Department of CSE, East West University.

ii

Abstract

Mining data from text is often becomes a crucial part of data mining tasks. With the

growing tendency of using cloud and sharing more and more files over the internet, the

necessity of applying a string matching algorithm in text mining has increased rapidly in

present time. In recent years many pattern matching algorithms are proposed to enhance

information retrieval from large file(s), especially in search engines as a mean of searching

a certain term throughout multiple web pages to rank pages. These tasks require a faster

string matching that can find a certain pattern from a text with a very minimal waste of

time. This can be ensured by using an algorithm that makes less character comparisons

and pattern shifts while searching. In this paper, we’re proposing a new algorithm named

Back and Forth Matching (BFM) algorithm to perform string matching tasks in faster

way by matching a pattern from both the forward and backward direction. A comparison

of this algorithm with other algorithm shows a tremendous improvement in matching

strings in large text files. For this advantage, we have implemented this algorithm in

searching through universities course curriculum in Bangladesh context and compare it

with the existing job circulars, in order to find out how much the university curriculum

is relevant with respect to current job markets. This will provide universities to learn

about their laggings and thereby make necessary improvements as per the suggestions

generated from our project.

iii

Acknowledgments

First of all, we would like to thank Almighty Allah for giving us the patience, courage,

and strength that was necessary to complete this thesis work.

We express our sincere gratitude to honorable supervisor Shakila Mahjabin Tonni, Lec-

turer, Department of Computer Science and Engineering, East West University, for her

kind continuous support, valuable suggestions, and guidance for the past 8 months. We

are indebted to her, for keeping us aloft and spirited throughout the entire thesis period.

Also, worth mentioning is about our beloved parents for their endless support, untold

sacrifices, and constant encouragements toward us.

Last but not the least, we would like to thank all those personnel, who despite of their

valuable time, shared knowledge and experiences, with us as well as gave their valuable

support and suggestions regarding this thesis work to extract the best possible outcome

from us.

MD. Obaidullah Al-Faruk

April, 2018

K.M. Akib Hussain

April, 2018

MD. Adnan Shahriar

April, 2018

iv

Table of Contents

Declaration of Authorship i

Letter of Acceptance ii

Abstract iii

Acknowledgment iv

Table of Contents v

List of Figures vii

List of Tables x

List of Algorithms xi

Chapter 1 Introduction 1

1.1 Background . 1

1.2 String Matching Procedure . 1

1.3 Literature Review . 2

1.4 Objective of Research . 3

1.5 Organization of the Report . 3

v

Table of Contents vi

Chapter 2 Related Work 4

2.1 Boyer-Moore Algorithm . 5

2.2 Boyer Moore Hoorspool Algorithm . 6

2.3 Knuth-Morris-Pratt algorithm . 7

Chapter 3 Proposed Algorithm 11

3.1 Pseudocode . 11

3.2 Example . 12

3.2.1 Preprocessing phase . 13

3.2.2 Searching phage . 13

3.3 Flowchart of the working process . 16

3.3.1 Flowchart of Preprocessing phase 16

3.3.2 Flowchart of Searching phase . 17

Chapter 4 System Development 19

4.1 Applied Tools . 19

4.1.1 Django framework v1.11 . 19

4.1.2 SQLite . 19

4.1.3 Python v3.6.2 . 20

4.1.4 PyCharm v2017.3.3 . 20

4.1.5 NLTK 3.2.5 . 21

4.1.6 CSS . 21

4.1.7 Bootstrap v3.3.7 . 21

4.1.8 Jinja v2 . 21

4.2 User Interface description . 22

4.2.1 Home page . 22

4.2.2 Data Insertion options . 23

4.2.2.1 Job data insert . 23

Table of Contents vii

4.2.2.2 University course content insert 24

4.2.3 View extracted keyword page . 25

4.2.3.1 Extracted Job Keywords 25

4.2.3.2 Extracted Curriculum Keywords 26

4.2.4 Content Compare option . 26

4.2.5 Comparison of Applied algorithms page 29

4.3 Flowchart of the working process . 30

Chapter 5 Result Analysis 31

5.1 Evaluation of job Suggestion . 31

5.2 Evaluation of Algorithm with Real Data 39

Chapter 6 Conclusion and Future Works 43

6.1 Conclusion . 43

6.2 Future Works . 43

Bibliography 44

Appendix A Source Code 49

Appendix B List of Publications 74

List of Figures

2.1 Preprocessing table for Boyer Moore Hoorspool 6

2.2 Searching Phase For BMH . 6

2.3 Preprocessing table for KMP . 8

2.4 Searching Phase For KMP . 9

3.1 The structure of posIndex table . 13

3.2 Preprocessing table for the proposed algorithm 13

3.3 step 1 of searching phase . 14

3.4 step 2 of searching phase . 14

3.5 step 3 of searching phase . 15

3.6 step 4 of searching phase . 15

3.7 exact pattern match in searching phase 15

3.8 Flowchart of Preprocessing phase . 16

3.9 Flowchart of Searching phase . 17

4.1 Home Page . 22

4.2 Job data insert . 23

4.3 University course content insert . 24

4.4 Search Job Contents . 25

4.5 Search University Contents . 26

4.6 Content Compare page . 27

viii

List of Figures ix

4.7 Find Similarity page . 28

4.8 Comparison of Applied algorithms page 29

4.9 Flowchart of System Implementation . 30

5.1 Graph of Result analysis of applied algorithms 38

5.2 Pie chart of execution time . 39

5.3 Total number of shifts to search “Bangladesh” 40

5.4 Total number of comparisons made to search “Bangladesh” 41

5.5 Execution time (sec) required to search “Bangladesh” 41

List of Tables

5.1 Performance analysis on different character sized text 42

x

List of Algorithms

1 Preprocessing(T, P) . 12

2 Searching(T, P, m, n, posIndex[]) . 12

xi

Chapter 1

Introduction

1.1 Background

As more and more data and files are being used and needed to be processed on real time

over the Internet, so at present retrieving information by processing huge text file, has

become an imperative data mining task [1]. To find a desired text (pattern) in a text

document is popularly known as the string matching. Though it creates the impression

of being a straightforward task, yet it may become a huge time-consuming process if the

file size gets increased. Because of this reason, a fast pattern matching algorithm is an

indispensable part of page ranking in search engines and digital libraries, checking syntax

and spelling mistakes, detecting network breach, and in many other applications [2]. It

has also find its way in the application of bio informatics, DNA sequences matching, and

behavior analysis [3, 4] sentiment analysis and online advertisements as well [1].

1.2 String Matching Procedure

Algorithms of string matching follow a general principle. They try to find out all the

occurrences of a pattern P of length m in the text T of length n. For this, the algorithms

first form a window of length m over the text. Next the leftmost character of the pattern

and window are aligned. Then the algorithms try to match the characters of the pattern

with the current window characters. This specific approach is known as attempt [5]. After

a whole match between pattern characters and window characters, or upon a mismatch,

1

Chapter 1. Introduction 2

the window shifts to the right of the text and the pattern changes its position respective

to the window. This succession of attempts and window shifts continues, until the shift

causes the right end of the window exceeds the length of the text. Such type of window

mechanism came to be known as the sliding window mechanism [6]. In most cases, the

algorithms have two phases, precisely the preprocessing phase and the searching phase

[1]. In the preprocessing phase, generally the pattern is preprocessed to form a table that

determines at what position the pattern needs to be shifted in finding a mismatch [1].

Then in the searching phase comparisons are made between pattern and text characters

from right to left, or left to right, or in specific ways to find out all the occurrences of

exact pattern match.

1.3 Literature Review

The main challenges of these algorithms are to minimize the character comparisons and to

maximize the length of shifts [1, 5]. Thus, in the hope of developing a more efficient string

matching algorithm, numerous algorithms have been developed from time to time [4].

Among them, the Knuth-Morris-Pratt algorithm(KMP), the Boyer-Moore algorithm(BM)

and the Boyer-Moore Hoorspool(BMH) algorithm are quite famous [7, 8, 9].

In our research we took two renowned raw string matching algorithms as the base for

developing the proposed algorithm. These two algorithms are: Boyer-Moore-Hoorspool

string matching algorithm and Knuth-Moris-Pratt string matching algorithm. The Boyer

Moore algorithm is one of the most renowned, efficient and extensively used pattern

matching algorithms. It has a significant difference compared to Nave approach of string

matching. A simpler and an improvement of BM is the Boyer-Moore-Hoorspool(BMH)

algorithm. It tries to find the occurrences of pattern in a text, by making comparisons

from right to left instead of from the beginning. It preprocesses the pattern and deter-

mines the maximum shifts of the pattern in case of a mismatch based on preprocessing

Chapter 1. Introduction 3

table known as bad character shifts. The Knuth-Moris-Pratt(KMP) algorithm works like

the Naive algorithm, but instead of checking all the characters from left to right after

each shift, the algorithm preprocesses a table that helps skipping comparisons of those

pattern characters that had already matched with the window characters.

1.4 Objective of Research

In this thesis report titled “A new string matching algorithm for analyzing uni-

versity curriculum with respect to current job circular(BFM)”, we’ve presented

a new string-matching algorithm BFM to find all the occurrences of exact patterns or

a string in a text. The presented algorithm shows much less character comparisons and

more shift lengths compared to other algorithms. More importantly, the algorithm does

both forward and backward checking and managed by a preprocessing table that de-

creases the number of efforts required to match the window with the text during the

matching phase.

1.5 Organization of the Report

We have structured our rest of the Thesis works as following: In Chapter 2, we survey

related work in string matching; Chapter 3, introduces our proposed algorithm, and its

methodology are discussed meticulously; In Chapter 4 we develop a project to analyze

university curriculum with respect to current job circular by implementing our proposed

algorithm. Moreover, in Chapter 5 the comparative results between our algorithm with

two other renowned algorithms are also presented; In Chapter 6, the conclusion and future

research directions are highlighted ; Lastly, proper references of our thesis works, source

code of our proposed algorithm and implementation, as well as our list of publications

has been illustrated respectively.

Chapter 2

Related Work

The main objective of string matching algorithms is to result in fast search by comparing

less characters of text and pattern, and also to skip as much unnecessary text characters

as possible to quickly find a matched pattern in the text. Due to the huge importance

of string matching algorithms in this computing world, so constantly new algorithms are

being developed from time to time. In this chapter, we have focused on two famous

string matching algorithms- the Boyer-Moore Hoorspool(BMH) and the Knuth-Morris-

Pratt(KMP) algorithm, to relate our proposed algorithm in the next chapter. We also

have discussed the Boyer-Moore algorithm(BM), as the BMH is a simple and improved

form of BM. Beside the two discussed algorithms, Quick Search algorithm is a recent

popular algorithm . Though, according to [10] this algorithm is more appropriate when

applied on a large character set to find a small pattern. Quick-Skip Search algorithm [11]

proposed a combination of Quick Search and the Skip Search algorithm. Again, in [4]

another hybrid algorithm was proposed using the idea of Quick-Skip and Boyer-Moore

algorithms.A parallel string matching algorithm based on this work is proposed in [12].

[13] Proposes a new algorithm combining the idea of Boyer-Moore and KMP algorithm.

Beside all these algorithms, a comperatively old string matching technique is Rabin Carp

string searching algorithm[14] that can search both single and multiple patterns in a

string. A more recent enhancement of this algorithm is proposed in [15], that deploys a

modified version of the Rabin Carp algorithm using a GPU processor.

4

Chapter 2. Related Work: 5

2.1 Boyer-Moore Algorithm

The BM is one of the most renowned, efficient and extensively used pattern matching

algorithms [1]. Unlike the previous pattern matching algorithms, it tries to find the

occurrences of pattern in a text, by making comparisons from right to left instead of

from the beginning. It preprocesses the pattern and determines the maximum shifts

of the pattern in case of a mismatch based on two heuristics. These heuristics, the

bad character heuristic and the good character heuristic works independently over the

pattern to produce two different arrays known as the preprocessing table [16]. During the

searching phase at each mismatch, BM determines best of the two heuristics and thus

can slide the pattern by maximum [17, 18].

The bad character heuristics works on certain principles. If there is a mismatch

between the current text character T [i] and the pattern character P [j], then the heuristics

looks up for the last occurrence of the mismatching character on the pattern. If it exists,

then the pattern is shifted to the right and aligned with the text in such a way that the

mismatch T [i] becomes a match. And if the mismatched character T [i] does not exists

in the pattern, then the pattern is shifted past the mismatched character by m positions

to the right [19].

The good suffix heuristics works in the following way. In the first case, while scanning

characters from right to left order, suppose there is a substring t in the text just before

a mismatch between T [i] and P [j], within the length m of the text. If substring t exists

in the pattern within P [0...j] then the pattern is shifted to the right so that the t in P is

aligned with the t in T . If t is not found in P [0...j], then in this second case the heuristics

looks for a suffix of t that matches with the prefix of P within P [0...j]. If so, then P is

shifted so that the obtained prefix of P is aligned with the suffix of t. And if both the

cases failed, then P is shifted by its entire length m, past the mismatched character t

[19].

Chapter 2. Related Work: 6

2.2 Boyer Moore Hoorspool Algorithm

The BMH algorithm is a simpler form and an improvement of the BM algorithm [20].

It only uses the bad character heuristics of the BM algorithm, whereas the good suffix

heuristics is ignored, as its practical implementation is difficult and more complex [2].

Yet, BMH’s algorithm shows similar kind of performance as the BM algorithm [1]. Given

below is an illustration of the working procedure of BMH algorithm:

We consider,

a text T: GCATCGTATACAGCAGAGAGTAC

and a pattern P: GCAGAGAG

The preprocessing table constructed using the pattern is as follows:

Figure 2.1: Preprocessing table for Boyer Moore Hoorspool

During the searching phase, the following is observed:

Figure 2.2: Searching Phase For BMH

Chapter 2. Related Work: 7

• Step 1: There is a mismatch found between the characters T [7] and P [7] while

checking from right to left. And the value of the mismatched text character T [7]

in the preprocessing table is 1. Hence the pattern is right shifted by 1 character.

• Step 2: Again a mismatch is found between T [8] and P [7]. The character value of

T [8] according to the table is 8. So, the pattern is right shifted by 8 characters.

• Step 3: For the mismatch between T [16] and P [7], the character at T [16] is ’A’

whose value in the table is 1, and hence the pattern is shifted by 1 character.

• Step 4: In this step, checking form right to left we found matches up to P [4]. Then

for the mismatch found between P [3] and T [13] we check value of the first matched

character of the pattern which is G. So, the pattern is shifted by 2 characters.

• Step 5: Finally, in this step, every successive character of the pattern and current

window are matched. So, the pattern is found in the text. Total number of shifts

involved is 4.

2.3 Knuth-Morris-Pratt algorithm

The KMP algorithm works like the Naive algorithm, but alongside using the degenerative

property of the pattern. That is, instead of checking all the characters after each shift,

the algorithm preprocesses P to construct a table pos[] that helps skipping comparisons

of those pattern characters that had already matched with the window characters. The

pos[i] holds the value that helps finding the longest proper prefix of P [0...i], that matches

a suffix of P [0...i] for each substring P [0...i] where i=0 to m-1.

The KMP does the following in the searching phase. It initially forms a window over

T , starting from T [0] equal to length m and aligns P [0] with T [0]. Then it scans from

left to right order to see whether the successive characters of the current window match

with that of P [12, 13, 21, 22, 23]. Whenever checking for P [0], if there is mismatch then

Chapter 2. Related Work: 8

the pattern is shifted by one character. Other than P [0], if suppose there is a mismatch

between T [i] and P [j]. Then from the preprocessing table pos[] it is found out whether

there exists a suffix before P [j] that has a proper prefix within the P [0...j − 1]. If this

is the case, then, the pattern is shifted to the right so that the obtained proper suffix

replaces the suffix position and the next comparison starts from after the replaced suffix

position. Failure in finding a proper prefix, the pattern is right shifted to align P [0] with

T [i] and successive characters are compared. In this way it continues, in order to find all

occurrences of P in T . The following shows an example of KMP algorithm:

We consider,

a text T: GCATCGTATACAGCAGAGAGTAC

and a pattern P: GCAGAGAG

The preprocessing table constructed based on the pattern is as follows:

Preprocessing Table:

Figure 2.3: Preprocessing table for KMP

Searching Phase:

• Step 1: There is a mismatch between the characters T [3] and P [3] while checking

from left to right. And the value of the last matched pattern character P [2] in the

preprocessing table is 0. Hence the pattern is shifted to the right so that the first

character in the pattern is aligned with the mismatched character T [3].

• Step 2: Again mismatch is found between T [3] and P [0]. So, the pattern is right

shifted by 1 character.

Chapter 2. Related Work: 9

• Step 3: Yet, again another mismatch occurred between T [4] and P [0]. So, the

pattern is shifted by 1 character.

• Step 4: In this step, checking form left to right, a mismatch found between P [1]

and T [6]. The value of the last matched character P [0] in the preprocessing table is

0. As such, the pattern is right shifted so that P [0] is aligned with the mismatched

character at T [6].

• Step 5-10: At every step, mismatch takes place between P [0] and the first char-

acter of the aligned window. So, at each step, the pattern is shifted to the right by

one character.

• Step 11: Finally, in this step, every successive character of the pattern and current

window are matched. So, the pattern is found in the text. Total number of shifts

involved is 10.

Figure 2.4: Searching Phase For KMP

Chapter 2. Related Work: 10

In this chapter, we have focused on two algorithms, namely the BMH and the KMP.

We have seen that though the objective is the same, but yet their approach is somewhat

different. In the preprocessing stage BMH and KMP, both preprocesses the pattern.

But during comparison of text and pattern characters, BMH compares from right to left,

whereas KMP applies left to right comparison technique. In preprocessing phase BMH

produces O(m+n) time and O(n) space complexity, and in the searching phase, a time

complexity of O(mn). In contrast, KMP generates O(m) space and time complexity in

the preprocessing phase, and a time complexity of O(n+m) in the searching phase. It

has been found that most applications uses BMH or KMP algorithms for their effective

and efficient functionality and other applications uses the basics of these algorithms

for their functionalities as the KMP algorithm has less time complexity and BM and

BMH algorithms has preprocessing time complexity less. So both algorithms have huge

importance for this world.

Chapter 3

Proposed Algorithm

In this chapter we put forward our algorithm Back and Forth String Matching algorithm

(BFM) and describe about how it is developed targeting larger shifts of pattern window

for each mismatch, thus minimizing the total number of shifts while matching strings.

Such description will also clear the concept of how this algorithm ensures less character

comparison in searching for a pattern in a text. We found out that our algorithm takes

a Preprocessing time complexity of O(n) and a Searching time complexity of O(mn)

3.1 Pseudocode

To serve the purpose, the algorithm compares characters from both left and right side in

each attempt while searching. As the first step of the algorithm, a preprocessing table

is prepared to find out the exact positions in the text, starting from where the pattern

can be aligned so that its first and last characters finds a match with the aligned text

characters.

Algorithm 1 depicts the preprocessing phase of BFM.

11

Chapter 3. Proposed Algorithm 12

Algorithm 1 Preprocessing(T, P)
1. i← 0
2. while i ≤ (n−m) do
3. if T [i]==P [0] then
4. if T [i + m-1] == P [m− 1] then
5. posIndex[]← i
6. end if
7. end if
8. i← i+ 1
9. end while

10. Searching(T, P , m,n, posIndex[])

To search a pattern in search phase, the algorithm checks for the pattern only at the

positions as referred by the preprocessing table. The whole process is given in Algorithm

2.

Algorithm 2 Searching(T, P, m, n, posIndex[])
1. length← len(posIndex[])
2. for i = 0 to length− 1 do
3. k ← posIndex[i]
4. s← 0
5. txtlast←m + k − 1
6. patlast←m−1
7. while k ≤ txtlast do
8. if T [k+1]==P [s+1] and T [txtlast−1]==P [patlast−1] then
9. k ← k + 1, s← s+ 1

10. txtlast← txtlast− 1, patlast← patlast− 1,
11. else
12. break
13. end if
14. end while
15. if all character matched then
16. Pattern found
17. end if
18. i← i+ 1
19. end for

3.2 Example

To demonstrate the mechanism of BFM consider the same text and pattern we used to

describe KMP and BMH algorithm.

T: GCATCGTATACAGCAGAGAGTACG

P: GCAGAGAG

Chapter 3. Proposed Algorithm 13

3.2.1 Preprocessing phase

In the preprocessing phase, our algorithm finds out all the possible positions in the text,

where the first and last character of the pattern are matched with the first and last

character of the aligned text. In such cases, a table named as posIndex is constructed,

for keeping only the text character indices, where P [0] is matched.

Figure 3.1: The structure of posIndex table

The preprocessing table posIndex, is thus constructed as follows:

Figure 3.2: Preprocessing table for the proposed algorithm

3.2.2 Searching phage

According to posIndex, the pattern is positioned below T [5]. Then by forward check, we

check for a match between the second character of the aligned pattern and text. At the

Chapter 3. Proposed Algorithm 14

same time by doing backward check, we check if there is a match in the aligned second

last character of the pattern and text. We ignored checking the first and last character,

as it has been already checked during the preprocessing phage.

In this way at each step, one character from the first, and one character from the

last is checked, until we have checked all the characters in the pattern. If at any step a

mismatch is found, then immediately the pattern is shifted to the right, and aligned with

the text at the position indicated by the next index of the posIndex[].

We illustrate each step of the searching phase in the following:

• Step 1: The first index of the posIndex[] indicates T [5] . So, the pattern is

aligned with the text at T [5], and we found a mismatch between P [1] and T [6]

during forward checking, whereas there is a match found at P [6] with T [11] during

backward checking.

Figure 3.3: step 1 of searching phase

Since a mismatch occurred, hence we choose the next index of the posIndex[], that

suggests moving the pattern to the new position at T[12].

• Step 2: Then we check characters at P [1] and T [13], and characters at P [6] and

T [18]. Both the forward and backward check resulted in a match.

Figure 3.4: step 2 of searching phase

Chapter 3. Proposed Algorithm 15

• Step 3: Next by forward check, P [2] and T [14] are compared. At the same time,

through backward check we compared the characters at P [5] and T [17]. Since both

comparisons proved to be a match, so we moved to the next step.

Figure 3.5: step 3 of searching phase

• Step 4: Finally, in this last step, it is found that P [3] matches with T [15], and

P [4] matches with T [16].

Figure 3.6: step 4 of searching phase

Thus, all the characters are matched, and we can conclude that there is an occur-

rence of the pattern in the text. Total number of shifts performed is 1.

centering

Figure 3.7: exact pattern match in searching phase

Chapter 3. Proposed Algorithm 16

3.3 Flowchart of the working process

3.3.1 Flowchart of Preprocessing phase

Figure 3.8: Flowchart of Preprocessing phase

Chapter 3. Proposed Algorithm 17

3.3.2 Flowchart of Searching phase

Figure 3.9: Flowchart of Searching phase

In this chapter we have tried to explain the methodology of our proposed algorithm. We

started explaining by dividing our whole algorithm into two phases- the preprocessing

Chapter 3. Proposed Algorithm 18

phase and the searching phase. We provided the pseudocode for each phase. Then for

further clarification of our methodology, we gave a working example of our algorithm.

Here we discussed in a stepwise manner about the working process in lieu for a given

text and pattern. And in the end we provided a flowchart of the algorithm. Thus this

chapter can create the visualization about the effectiveness and the performance of the

proposed algorithm.

Chapter 4

System Development

For the thesis implementation, we have build up an application applying our string

matching algorithm at its core functionality, whereas using NLTK together with Django

framework to give a it a complete shape. Rest of the tools we have used are briefly

explained in the next section.

4.1 Applied Tools

4.1.1 Django framework v1.11

Django is a high-level Python Web framework that encourages rapid development and

clean, pragmatic design. Built by experienced developers, it takes care of much of the

hassle of Web development, so you can focus on writing your app without needing to

reinvent the wheel. Django was designed to help developers take applications from con-

cept to completion as quickly as possible. Django takes security seriously and helps

developers avoid many common security mistakes. Django has been referred to as an

MTV frameqwork because the controller is handled by the framework itself and most of

the excitement happens in models, templates and views

4.1.2 SQLite

SQLite is a relational database management system contained in a C programming li-

brary. In contrast to many other database management systems, SQLite is not a client-

19

Chapter 4. System Development 20

server database engine. Rather, it is embedded into the end program. SQLite is ACID-

compliant and implements most of the SQL standard, using a dynamically and weakly

typed SQL syntax that does not guarantee the domain integrity. SQLite is a popular

choice as embedded database software for local/client storage in application software such

as web browsers.

4.1.3 Python v3.6.2

Python is an interpreted high-level programming language for general-purpose program-

ming. Created by Guido van Rossum and first released in 1991, Python has a design

philosophy that emphasizes code readability, notably using significant whitespace. It pro-

vides constructs that enable clear programming on both small and large scales. Python

features a dynamic type system and automatic memory management. It supports multi-

ple programming paradigms, including object-oriented, imperative, functional and pro-

cedural, and has a large and comprehensive standard library. Python interpreters are

available for many operating systems. CPython, the reference implementation of Python,

is open source software and has a community-based development model, as do nearly all

of its variant implementations.

4.1.4 PyCharm v2017.3.3

PyCharm is an Integrated Development Environment used in computer programming,

specifically for the Python language. It is developed by the Czech company JetBrains.

Pycharm is an IDE tool kit basically meant for developing programs and/or building

softwares in Python. Developed by JetBrains it provides Assistive toolkit and build-in

features like most of the IDE’s like eclipse. It also supports development for JavaScript,

CoffeeScript, TypeScript, CSS etc.

Chapter 4. System Development 21

4.1.5 NLTK 3.2.5

The Natural Language Toolkit, or more commonly NLTK, is a suite of libraries and pro-

grams for symbolic and statistical natural language processing for English written in the

Python programming language. It provides easy-to-use interfaces to over 50 corpora and

lexical resources such as WordNet, along with a suite of text processing libraries for clas-

sification, tokenization, stemming, tagging, parsing, and semantic reasoning, wrappers

for industrial-strength NLP libraries, and an active discussion forum.

4.1.6 CSS

Cascading Style Sheets is a style sheet language. CSS is the language for describing the

presentation of Web pages, including colors, layout, and fonts. It allows one to adapt the

presentation to different types of devices, such as large screens, small screens, or printers.

CSS is independent of HTML and can be used with any XML-based markup language.

4.1.7 Bootstrap v3.3.7

Bootstrap is a free and open-source front-end library for designing websites and web ap-

plications. It contains HTML- and CSS -based design templates for typography, forms,

buttons, navigation and other interface components, as well as optional JavaScript ex-

tensions. Unlike many web frameworks, it concerns itself with front-end development

only.

4.1.8 Jinja v2

Jinja is a template engine for the Python programming language and is licensed under a

BSD License created by Armin Ronacher. It is a text-based template language and thus

can be used to generate any markup as well as source code. The Jinja template engine

allows customization of tags, filters, tests, and global.

Chapter 4. System Development 22

4.2 User Interface description

4.2.1 Home page

• As soon as user start the application he/she enters into the home page. This page

contains information for a quick glance of the project

• The navigation bar has got options to access other functionality of the application

like:

1. Data Insertion

2. Viewing extracted keywords and

3. Content Comparison

Figure 4.1: Home Page

Chapter 4. System Development 23

4.2.2 Data Insertion options

• This option is used if the user wants to store data into the database. Hovering to

the ”Data insertion” option will instantly generate two options.

1. Job data insert and

2. University course content insert

• The user can store two different kind of data in the database. He/she can either

insert the information of a job circular using the ”job data insertion” option.Or

else through the ”University course content insert” option he/she can store course

contents of a specific department of a university.

4.2.2.1 Job data insert

• This is a part of Data insert option.

Figure 4.2: Job data insert

Chapter 4. System Development 24

• This page consists of a form where user has to manually insert job data from job

circulars. The form contains “Job Title”, “Category”, “Job requirement”, “Related

Department” named text fields.

• After completely filling up all the necessary fields of the form, user should press the

submit button.

• As a result, the contents of job requirements are analyzed using Natural language

processing toolkit(NLTK) to extract nouns proper nouns from noun phrases, and

the extracted words are stored in database.

4.2.2.2 University course content insert

Figure 4.3: University course content insert

• This is another part of Data insert option

• This page consists of a form where user has to manually insert course contents

Chapter 4. System Development 25

of a university. In this page, there is form which contains “University name”,

“Department name”, “Course name”, “Course content” named text fields.

• After completely filling up all the necessary fields of the form, user should press the

submit button.

• As a result, the data placed in the “Course Contents” are analyzed using NLTK

to extract proper nouns from noun phrases, and the extracted words are stored in

database.

4.2.3 View extracted keyword page

4.2.3.1 Extracted Job Keywords

Figure 4.4: Search Job Contents

When user has job contents of different job circulars stored in the database, then at any

time he/she can enter the extracted job keywords option and all he/she has to do is select

a job category from the dropdown menu and click submit button. Then at an instant,

Chapter 4. System Development 26

all the extracted keywords of job requirements, and departments of university related to

that provided category name is displayed.

4.2.3.2 Extracted Curriculum Keywords

When user has university course contents stored in the database, then user entering

this option can see the extracted course content keywords, generated from specific de-

partments of desired universities. These specific departments and their contents are

automatically retrieved from the database using the provided category name.

Figure 4.5: Search University Contents

4.2.4 Content Compare option

• User entering this option has the privileges of choosing a specific university, depart-

ment, and job category from a list of options.

• After selecting desired choices, the user needs to press submit button.

Chapter 4. System Development 27

• This will generate extracted keywords of university course contents according to the

selected department name and university. Also it will fetch and display extracted

keywords of job requirements according to the provided job category, from the

database.

Figure 4.6: Content Compare page

• Next, to see how many extracted keywords from job requirements matched with the

extracted keywords of university course contents, the user has to press the button

entitled ”Find Similarity” located at the bottom of the page. It will redirect to a

new page.

Chapter 4. System Development 28

Figure 4.7: Find Similarity page

• This page is about to show the similarity between extracted keywords of job re-

quirements and university course content.

• The page displays two outputs- Matched contents and unmatched contents or Sug-

gestions.

1. Matched contents: The matched contents will show only those keywords

that are common to both job requirements of the specified job category and

course contents of the predefined university department.

2. Unmatched contents or Suggestions: The unmatched contents will show

only those keywords of job requirements that are not available in the course

contents of the specified university department, and suggest the user to add

these unmatched contents in that course curriculum.

• To find similarity between the job requirements and the university course curricu-

Chapter 4. System Development 29

lum, we have considered the extracted keyword course contents as ”text” and each

extracted keywords of job requirements as ”pattern” and thus determine whether

there is a match by implementing our proposed string matching algorithm.

• At the bottom of the page a new option titled as ”Show comparison of Applied

Algorithms” will generate automatically. This option is provided for users, to

get a comparative study of the performance of our algorithm with the two other

algorithms namely Boyer-Moore Hoorspool and the Knuth-Morris-Pratt algorithm

in finding the matched and unmatched contents.

4.2.5 Comparison of Applied algorithms page

Figure 4.8: Comparison of Applied algorithms page

Here we can see the performance comparison of the our algorithm with two other algo-

rithms: BMH and KMP. We show our results in case of preprocessing time, searching

time, number of character comparisons, and number of shifts required to complete the

searching process.

Chapter 4. System Development 30

4.3 Flowchart of the working process

Figure 4.9: Flowchart of System Implementation

Chapter 5

Result Analysis

For generating results we have used PC of following configuration:

Processor : Intel (R) core(TM) i5-3230M CPU @2.6 GHz

RAM : 8.00GB (7.90 usable)

System type : 64-bit Operation System , x64-based processor

OS: Windows 10

5.1 Evaluation of job Suggestion

We have collected University course content from East West University official site. Ex-

tracted keywords of course contents, along with the course name and department name

are stored in the database.

Job data are collected from www.bdjobs.com named as Bdjobs official site . We

collected data from 01 April 2018 to 11 April 2018 for the IT and telecommunication cat-

egory. Then we applied NLTK to extracts nouns, thus generating the following extracted

keywords.

Extracted Keyword Job :

graphic designing adobe illustrator adobe photoshop adobe indesign dreamweaver

adobe flash design related google analytics seo google ad , ios swift cocoa ios mac os

html css javascript ui/ux ios jira trello , vm esx esxi virtual center scsi fc iscsi sas

advanced esx openstack/vmware configuration vmware vmware heartbeat auto host

31

Chapter 5. Result Analysis 32

, mobile java development ios tomcat apache dynamic , minimum practical , digital

marketing facebook google video youtube photoshop illustrator graphics design , cisco

network security routing cisco security technologies content security firewall vpn ids

ips aaa source fire firewalls vpns ips , agile scrum master certification , young expert

experienced dynamic quick learner punctual team members cloud computing lamp

setting maintaining explain , ericsson bss development sound ericson cbio sound java

telco billing sound shell rdbms linux unix/ linux php/ java bscs api , fair , computer

hardware/ network hosting software service , mobile , html css php excellent , laravel

php mysql laravel json rest api linux os css javascript bootstrap enterprise laravel

laravel jira trello , ui/ux expert acceptance neoload selenium ide selenium webdriver

protractor android/iphone/ipad uat sql chrome dev english , javascript , payroll sql data

, english report learning centre semi structural learning centre mobile influencing english

, asp.net , css javascript jquery xhtml cms end software architect technical software ,

php wordpress html css bootstrap javascript jquery ajax json php mysql seo work open

cms , english , software marketing advertising promotion support/ client service market

research software fluent english smart honest sincere oriented challenge custer service

, data center telecommunication iig isp sound data , aws azure cloud platform docker

microservices oracle sql visual studio oracle sql html javascript css team foundation

crystal reports enterprise build deployment github maven/gradle jenkins agile develop-

ment enterprise architecture/systems , jquery , graphic designing logos adobe illustrator

adobe photoshop adobe indesign dreamweaver adobe flash sketch capable all kinds

design related projects ui good google analytics seo web web google ad email sms ex-

cellent motivated quick project , javascript jquery asp.net , oracle object oriented html css

Then we took East West University course contents from their website for CSE de-

partments and applied NLTK noun extraction process to generate the following keywords:

Chapter 5. Result Analysis 33

Extracted Keyword University :

software quality quality assurance quality control sqa cmm cmmi software quality

review formal cost software stlc software test software software white black test pair

path boundary decision design designing technical iot basics networking communication

protocols sensor networks communications interoperability iot actuators implementation

iotwith software networking sdn data handling analytics cloud computing fog computing

smart homes connected vehicles smart grid industrial iot healthcare activity monitoring

structures abstract data type implementation stack implementation application queue

implementation application iterative solution recursive solution basic tree concepts tree

traversals binary trees binary search trees insert delete search traversal algorithms avl

tree binary heap priority queue graph terminology graph tree mst shortest path prob-

lem.hashing software engineering software sdlc overview software process models incre-

mental agile software development agile ux lean ux extreme scrum software require-

ment requirement questionnaire designing software uml behavioral use interaction code

halstead project functional point analysis fp basics- uat integration system testing data

introduction protocol architecture osi tcp/ip analog digital transmission transmission

channel shannons guided wireless signal synchronous transmission asynchronous trans-

mission interfacing types error crc error hamming flow hdlc arq arq arq multiplexing fdm

tdm wdm mobile mobile software mobile design end networking overview wireless com-

munication networking mobile computing historical adaptation wireless channel rayleigh

coherence frequency tracking multiple access techniques tdma fdma cdma aloha slotted-

aloha csma/ca maca lan ieee ieee wpan ieee satellite hidden request rts cts network nav

convex polygon orthogonal point voronoi delaunay linear randomized graph computer

computer pci bus computer pentium powerpc computer dram computer riad input/out-

put i/o programmed i/o interrupt-driven i/o input/output i/o computer arithmetic alu

interger instruction machine instruction cpu cpu risc computer information ethics stan-

ford encyclopedia philosophy acm code ethics professional conduct software engineering

Chapter 5. Result Analysis 34

code ethics professional practice data protection act computer misuse act impact com-

puter misuse act copyright designs patents act freedom information act security inter-

net communications bangladesh communication technology act bangladesh copyright act

bangladesh telecommunication regulatory act pornography act ethical virtue virtue anal-

ysis evaluation design service tos end user license agreement eula privacy policy finite

automata regular expressions nondeterminism properties regular languages context-free

grammars pushdown automata grammars equivalences properties context-free languages

turing machines variations turing machines decidable problems undecidability time com-

plexity space complexity np-completeness micro types architecture design representation

documentation reuse case study database management systems sql structured query lan-

guage using e-r model database indexing hashing techniques basic database normaliza-

tion lossy decomposition functional dependency first form boyce-codd normal form vlsi

ic cmos circuits dc logical combinational arithmetic cmos vlsi data memories vlsi time

distributed remote global distributed deadlock check consensus line ellipse clipping ge-

ometric graphics opengl input interaction opengl color rgb cmy hls opengl rgb indexed

generate opengl curve image mobile phones network technologies android programming

android application frameworks building simple user interface activities intents services

broadcast receivers data persistence processes threads asynchronous tasks internet re-

sources apps publishing business models objective-c application concepts dc circuit law

kirchhoff voltage law kirchhoff current law series-parallel voltage current division wye-

delta transformations circuit analysis methods nodal mesh linearity superposition source

transformation thevenin norton maximum concepts ac sinusoids phasors phasor circuit

elements impedance kirchhoff frequency impedance combinations superposition source

transformation thevenin norton nodal mesh analysis instantaneous maximum effective

rms complex design design design compiler lexical analyzer regular expression transition

diagram finite automata nfa regular expression nfa dfa nfa dfa subset construction dfa

context free grammar ambiguity left recursion top down parsing bottom up parsing se-

Chapter 5. Result Analysis 35

mantic analysis run time environment code generation optimization diode rectifier diode

clipperand clamper characteristics op comparator op voltage adder difference integrator

differentiator design device structure physical operation bjt modes operation current-

voltage characteristics bjt dc bjt device structure physical operation mosfet modes op-

eration current-voltage characteristics channel length modulation effect mosfet amplifier

switch dc mosfet small mosfet designing mosfet data information root finding methods

bracketing methods root finding methods open-end methods introduction solution direct

curve line interpolation overview overview channel power trunking cell cell microcell big

data big data skills sources big data characteristics big data four v key big data plat-

form storage analytics governance big data data data science relational databases sql data

cleansing preparation data summarization visualization descriptive statistics correlation

association analysis cluster analysis linear regression principles classification decision trees

linear classifiers neural networks r introduction hadoop hadoop mapreduce/pig/hive/h-

base cloud big data web fundamentals programming languages web html basics php html

php css database php dynamic asp.net ajax dhtml security artificial intelligence intelli-

gent agents uniformed search strategies informed search strategies constraint satisfaction

problem games games game alpha-beta introduction genetic algorithm ga terminology

first-order logic knowledge engineering first-order logic planning planning problem plan-

ning algorithms game theory nash equilibrium mixed strategy uncertainty uncertainty

basic probability notation bayes rule convolutional neural network convolution layer

pooling layer fully connected layer probabilistic reasoning time hidden markov models

kalman filters learning observations knowledge learning statistical learning methods rein-

forcement learning data mining data mining goals stages data mining process data mining

techniques knowledge representation methods data data data data data association cor-

relation classification basic decision prediction statistical linear clustering basic first hier-

archical conceptual advanced data mining text web assignment mini project report pre-

sentation counting hall cuts network vertex mycielski chromatic euler kuratowski data

Chapter 5. Result Analysis 36

protocol mac channel csma/cd contention beb csma introduction link hierarchical broad-

cast multicast internet protocol ip ipv4 ip network nat icmp arp rarp bootp dhcp qos rsvp

internetworking congestion transport tcp/udp congestion transport hardware interaction

process inter process communication ipc mutual memory i/o storage management imple-

menting file management digital image visual perception light electromagnetic spectrum

image sensing acquisition image sampling quantization pixels linear nonlinear operations

image enhancement gray level transformations histogram processing basics spatial filter-

ing filters color color models pseudocolor image processing basics full-color image process-

ing color transformations smoothing sharpening color segmentation image discontinuities

edge linking boundary detection thresholding segmentation segmentation morphological

watersheds morphological image processing erosion opening closing extensions gray-scale

images video lossy image jpeg video mpeg object recognition learning recognition bagof-

wordsmodel review random number generators generating random variates output data

analysis single system verification/validation assignments mini projects humancomputer

interaction human capabilities computer interaction paradigms hci design process design

basics hci software process design rules universal design implementation support tools

users models issues stakeholder requirements evaluation user support user support task

models dialogs analyzing tasks dialog notations design augmented reality hypertext mul-

timedia groupware computer-supported collaborative work ubiquitous computing virtual

reality augmented reality hypertext multimedia world wide web biological sequence msa

blast fasta protein gene protein machine learning learning setup linear prediction decision

tree logistic regression probabilistic modeling method nave bias learning apriori principal

hierarchical artificial neural networks mlps deep learning support vector machines rein-

forcement view auto cad drafting modify commands auto cad drafting isometric isometric

projection/view.introduction lines lettering dimensioning plain diagonal vernier scale or-

thographic projection first third oblique lines traces projection lines polygonal lamina

circular lamina cube prism pyramid cylinder cone suspended solids isometric lines planes

Chapter 5. Result Analysis 37

scale embedded architecture device drivers develop sequential data flow state concur-

rent testing simulation debugging task design case graphs bfs dfs dfs topological single

dijkstra bellman-ford dag co3 algorithm divide conquer closest counting greedy coin

knapsack huffman optimal activity dynamic dp memorized lis knapsack longest lcs rock

network flow max flow min-cut residual network augmenting ford-fulkerson edmonds-karp

euclid gcd extended euclid number recurrence iteration substitution recursion master

pattern rabin-karp strings p np binary binary boolean logic minimization boolean k-map

combinational design design design design combinational verilog hdl flip-flops representa-

tion design design design design verilog hdl c programming information system analysis

design project system requirements modeling feasibility analysis application architecture

modeling input-output user interface object-oriented design modeling set combinations

discrete probability algorithm growth relations graph algebraic project well-known so-

cial cryptography authentication public key infrastructure ipsec vpns e-commerce attack

security security intrusion detection prevention response containment digital disaster re-

covery network vpns intrusion detection memory i/o architecture microprocessor registers

addressing modesof microprocessor hardware specificationsof microprocessor memory in-

terfacing interrupts embedded processors structure functions microcontroller addressing

modes microcontrollers programming microcontroller assembly language interfacing mi-

crocontroller peripherals interrupts microcontroller robotics robot mechanical structure

kinematics actuators sensors trajectory planning motion planning control architecture

motion control force control visual servoing

Then we considered each words of extracted job keyword list as “pattern” and uni-

versity course extracted keywords list as “text”. And finally by applying each of the

algorithms-BFM, KMP, and BMH separately we found out whether there is a match

between job and university extracted keywords. Based on the result obtained, we plot

the following graph to show the performance comparison of the applied algorithms:

Chapter 5. Result Analysis 38

Figure 5.1: Graph of Result analysis of applied algorithms

Here, in the Figure 5.1 we have shown a comparative study of BFM, BMH, and KMP

algorithm based on preprocessing time, searching time, number of shifts and number of

character comparisons.

Chapter 5. Result Analysis 39

We have also found out execution time which is illustrated in the follow graph:

Figure 5.2: Pie chart of execution time

5.2 Evaluation of Algorithm with Real Data

To evaluate the performance of BFM, we’ve used the large corpus available at the Can-

terbury Corpus [24]. We’ve used the “World192.txt” file with 1,905,891 characters and

the “bible.txt” file with 3,250,898 characters files for our purpose. Along with our algo-

rithm BFM, we evaluated both BMH and KMP algorithms to compare our algorithm’s

performance on both files.

As in many previous works, the total no. of comparisons and shifts needed to find a

pattern is considered as the measures of an algorithm’s quality [13], we are using these

Chapter 5. Result Analysis 40

two criteria to evaluate our algorithm. The first evaluation was done on “World192.txt”

file, to find the pattern “Bangladesh”. This pattern appears 9 times in file. Total shifts

and comparisons required for the task is displayed in figure 5.3 and 5.4. The execution

time taken to accomplish the search is given in figure 5.5.

Figure 5.3: Total number of shifts to search “Bangladesh”

From these result it can be said that the number of shifts, comparison and execution

time of our algorithm BFM are very much lower than BMH and KMP.

Chapter 5. Result Analysis 41

Figure 5.4: Total number of comparisons made to search “Bangladesh”

Figure 5.5: Execution time (sec) required to search “Bangladesh”

To evaluate BFM algorithms perform with respect to the file size, we applied all three

algorithms on the “bible.txt” file. On this file we search for the word “God” as this word

has preferably many occurrences throughout the file. First of all we considered the total

character size of the file and then we decrease the character size of the search text and

perform the search again on it. The result of the process is displayed in 5.1. This analysis

also shows our proposed algorithm is performing better than the other algorithms.

Chapter 5. Result Analysis 42

Table 5.1: Performance analysis on different character sized text
Char Size 3250898 1577526 677382 416172 242632

No. of shifts

BFM 8694136 8694136 1759121 552104 195329

BMH 3.1E+09 3.1E+09 2.4E+09 9.8E+07 3.2E+07

KMP 8.9E+09 8.9E+09 2.4E+09 2.8E+08 9.2E+07

No. of Comparisons

BFM 3.4E+07 3.4E+07 6946292 2211962 783158

BMH 3.3E+09 3.3E+09 2.4E+09 1E+08 3.4E+07

KMP 8.9E+09 8.9E+09 2.4E+09 2.8E+08 9.3E+07

Execution Time (s)

BFM 0.0625 0.0313 0.0313 0.0313 0.0156

BMH 1.0157 2.1721 0.8595 0.2031 0.0938

KMP 1.9221 1.9846 1.2189 0.1719 0.1094

Chapter 6

Conclusion and Future Works

6.1 Conclusion

The Back and Forth Matching (BFM) algorithm is preprocessing a text beforehand by

applying forward and backward matching to match both the first and last characters of

the pattern. This preprocessing task enhances the searching by enabling the algorithm

to search only on the indexed positions, thus decreasing both the number of shifting

and character comparisons. One limitation of this algorithm is if the text and pattern

both are small, then BFM’s performance degrades, as there is a preprocessing phase to

complete before searching. Nevertheless, we found the performance of BFM in respect

to execution time, no. of shifts and comparisons to be exceptionally high in contrast to

KMP and BMH. Hence, this algorithm would certainly an efficient choice in case of the

tasks that require huge amount of text searches. For this, considering our algorithm for

building up applications other than the one applied in this thesis, will obviously result

in good performance.

6.2 Future Works

In future, we have a vision to take the challenge in addressing following issues:

• Here, in our implementation we have included only one university. So there is a

scope of applying the proposed algorithm for multiple universities.

43

FUTURE WORKS 44

• We will also take the challenge in including our project methodology for more job

portals. Thus can compare our effectiveness.

• We will also use machine learning techniques to reduce amount of garbages to give

more accurate suggestions.

Bibliography

[1] D. Gurung, U. K. Chakraborty, and P. Sharma, “Intelligent predictive string search

algorithm,” Procedia Computer Science, vol. 79, pp. 161–169, 2016.

[2] N. Singla and D. Garg, “String matching algorithms and their applicability in various

applications,” International journal of soft computing and engineering, vol. 1, no. 6,

pp. 218–222, 2012.

[3] R. C. Roistacher, “On-line computer text processing: A tutorial,” Behavior Research

Methods, vol. 6, no. 2, pp. 159–166, 1974.

[4] S. S. M. Al-Dabbagh, M. A. S. Naser, and N. H. Barnouti, “Fast hybrid string

matching algorithm based on the quick-skip and tuned boyer-moore algorithms,”

INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND

APPLICATIONS, vol. 8, no. 6, pp. 117–127, 2017.

[5] C. Charras, T. Lecrog, and J. D. Pehoushek, “A very fast string matching algorithm

for small alphabets and long patterns,” in Annual Symposium on Combinatorial

Pattern Matching. Springer, 1998, pp. 55–64.

[6] A. Rasool, N. Khare, H. Arora, A. Varshney, and G. Kumar, “Multithreaded imple-

mentation of hybrid string matching algorithm,” International Journal on Computer

Science and Engineering, vol. 4, no. 3, p. 438, 2012.

45

BIBLIOGRAPHY 46

[7] D. E. Knuth, J. H. Morris, Jr, and V. R. Pratt, “Fast pattern matching in strings,”

SIAM journal on computing, vol. 6, no. 2, pp. 323–350, 1977.

[8] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,” Communications

of the ACM, vol. 20, no. 10, pp. 762–772, 1977.

[9] R. N. Horspool, “Practical fast searching in strings,” Software: Practice and Expe-

rience, vol. 10, no. 6, pp. 501–506, 1980.

[10] A. F. Klaib, Z. Zainol, N. H. Ahamed, R. Ahmad, and W. Hussin, “Application of

exact string matching algorithms towards smiles representation of chemical struc-

ture,” International journal of computer and information science and engineering,

vol. 1, pp. 235–239, 2007.

[11] M. A. S. Naser, M. F. Aboalmaaly et al., “Quick-skip search hybrid algorithm for

the exact string matching problem,” International Journal of Computer Theory and

Engineering, vol. 4, no. 2, p. 259, 2012.

[12] C. S. Rao, K. B. Raju, and S. V. Raju, “Parallel string matching with multi core

processors-a comparative study for gene sequences,” Global Journal of Computer

Science and Technology, 2013.

[13] R. Y. Tsarev, A. Chernigovskiy, E. Tsareva, V. Brezitskaya, A. Y. Nikiforov, and

N. Smirnov, “Combined string searching algorithm based on knuth-morris-pratt and

boyer-moore algorithms,” in IOP Conference Series: Materials Science and Engi-

neering, vol. 122, no. 1. IOP Publishing, 2016, p. 012034.

[14] R. M. Karp and M. O. Rabin, “Efficient randomized pattern-matching algorithms,”

IBM Journal of Research and Development, vol. 31, no. 2, pp. 249–260, 1987.

BIBLIOGRAPHY 47

[15] P. Shah and R. Oza, “Improved parallel rabin-karp algorithm using compute unified

device architecture,” in International Conference on Information and Communica-

tion Technology for Intelligent Systems. Springer, 2017, pp. 236–244.

[16] J. Bhandari, “String matching rules used by variants of boyer-moore algorithm,”

Journal of Global Research in Computer Science, vol. 5, no. 1, pp. 8–11, 2014.

[17] R. Sharma, V. Gupta, and V. Kumar, “Efficient parameterized string matching algo-

rithm,” International Journal of Emerging Research in Management and Technology

(IJERMT), 2015.

[18] J. Tarhio and E. Ukkonen, “Approximate boyer–moore string matching,” SIAM

Journal on Computing, vol. 22, no. 2, pp. 243–260, 1993.

[19] M. Sahli and T. Shibuya, “Max-shift bm and max-shift horspool: Practical fast exact

string matching algorithms,” Journal of Information Processing, vol. 20, no. 2, pp.

419–425, 2012.

[20] T. Raita, “Tuning the boyer-moore-horspool string searching algorithm,” Software:

Practice and Experience, vol. 22, no. 10, pp. 879–884, 1992.

[21] R. Rahim, I. Zulkarnain, and H. Jaya, “A review: search visualization with knuth

morris pratt algorithm,” in IOP Conference Series: Materials Science and Engi-

neering, vol. 237, no. 1. IOP Publishing, 2017, p. 012026.

[22] I. M. Abu-Zaid and E. K. El-Rayyes, “Parallel search using kmp algorithm in arabic

string,” International Journal of Science and Technology, vol. 2, no. 7, 2012.

[23] R. Janani and S. Vijayarani, “An efficient text pattern matching algorithm for

retrieving information from desktop,” Indian Journal of Science and Technology,

vol. 9, no. 43, 2016.

Source Code BIBLIOGRAPHY 48

[24] M. Powell, “The canterbury corpus,” Jul 2007,

http://corpus.canterbury.ac.nz/descriptions, accessed 2018-02-15.

Appendix A

Source Code

1. BFM Code

import math

import time

def search Func (txt , pat , n ,m, posIndex) :

s t a r t=time . time ()

i f m%2==0:

midPoint=int (m/2)

else :

midPoint=math . f l o o r (m/2)+1

length=len (posIndex)

f l a g=0

s h i f t=0

charComparison = 0

for pos in posIndex :

k=pos

l=0

p=m+k−1

49

Source Code 50

LastCharPat=m−1

count=0

while k<=p :

charComparison = charComparison + 2

i f txt [k+1]==pat [l +1] and txt [p−1]==pat [LastCharPat −1] :

k+=1

l+=1

p−=1

LastCharPat−=1

count+=1

else :

break

i f count==midPoint :

f l a g=1

print (”Match found at po s i t i o n : {}” . format (pos))

print (”Total Sh i f t : {}” . format (s h i f t))

print (”Total Character Comparsion : {}” . format (charComparison))

s h i f t=s h i f t+1

i f f l a g==0:

print (”No match found”)

end=time . time ()

print (”Total Execution time in s ea r ch ing phase : ” , end−s t a r t)

def preProcess Func (txt , pat) :

s t a r t=time . time ()

n=len (txt)

Source Code 51

m=len (pat)

i f m==1:

return

i=0

posIndex =[]

while i<=(n−m) :

i f txt [i]==pat [0] :

i f txt [i+m−1] == pat [m−1] :

posIndex . append (i)

i+=1

end=time . time ()

print (”Execution time in Preproce s s ing Phase : ” , end−s t a r t)

search Func (txt , pat , n ,m, posIndex)

def input Func () :

while 1 :

txt=input (”Enter the text : ”)

pat = input (”Enter the pattern : ”)

preProcess Func (txt , pat)

input Func ()

2. BMH Code

import time

NO OF CHARS = 256

Source Code 52

def badCharHeurist ic (s t r i ng , s i z e) :

s t a r t=time . time ()

badChar = [−1]∗NO OF CHARS

for i in range (s i z e) :

badChar [ord (s t r i n g [i])] = i ;

end=time . time ()

print (”Execution time in p r ep ro c e s s i ng Phase : ” , end−s t a r t)

return badChar

def search (txt , pat) :

m = len (pat)

badChar = badCharHeurist ic (pat , m)

s t a r t=time . time ()

n = len (txt)

pos = 0

s h i f t=0

charComparison=0

while (pos <= n−m) :

j = m−1

while j>=0 and pat [j] == txt [pos+j] :

charComparison=charComparison+1

j −= 1

Source Code 53

i f j <0:

print (”Pattern occur at po s i t i o n = {}” . format (pos))

print (”Total s h i f t = {}” . format (s h i f t))

print (”Total Character Comparison = {}” . format (charComparison))

pos += (m−badChar [ord (txt [pos+m])] i f pos+m<n else 1)

charComparison = charComparison + 1

else :

pos += max(1 , j−badChar [ord (txt [pos+j])])

charComparison = charComparison + 1

s h i f t = s h i f t + 1

end=time . time ()

print (”Execution time in s ea r ch ing phase : ” , end−s t a r t)

def input Func () :

while 1 :

txt=input (”Enter TXT : ”)

pat=input (”Enter PAT: ”)

search (txt , pat)

input Func ()

3. KMP Code

import time

def Pre f ixArrayCreat ion (pat ,m, preArray) :

s t a r t=time . time ()

Source Code 54

j=0

i=1

preArray [0]=0

while i<m:

i f pat [i]==pat [j] :

preArray [i]= j+1

j=j+1

i=i+1

else :

i f j !=0:

j=preArray [j −1]

else :

preArray [i]=0

i=i+1

end=time . time ()

print (”Total Execution time in Preproce s s ing phase : ” , end−s t a r t)

def KMPSearch(text , pat) :

n=len (t ex t)

m=len (pat)

preArray =[0]∗m

Pref ixArrayCreat ion (pat ,m, preArray)

s t a r t = time . time ()

i=0

j=0

k=0

Source Code 55

s h i f t=0

charComparsion=0

while i<n :

i f t ex t [i]==pat [j] :

charComparsion=charComparsion+1

i+=1

j+=1

i f j==m:

print (”Pattern found at po s i t i o n {}” . format (i−j))

print (”Total Sh i f t : {}” . format (s h i f t))

print (”Total Character Comparison : {}” . format (charComparsion))

j=preArray [j −1]

k+=1

e l i f i<n and t ex t [i] != pat [j] :

charComparsion=charComparsion+1

i f j !=0:

j=preArray [j −1]

else :

i+=1

s h i f t=s h i f t+1

i f k==0:

print (”No match found”)

end=time . time ()

print (”Total Execution time in s ea r ch ing phase : ” , end−s t a r t)

def inputFunc () :

while 1 :

Source Code 56

#t e x t= input (’ Enter the t e x t : ’)

f=open(” b i b l e . txt ”)

t ex t=f . read ()

f . c l o s e ()

pat=input (’ Enter the pattern : ’)

KMPSearch(text , pat) ;

inputFunc ()

4. URL

from django . conf . u r l s import u r l

from . import views

u r l p a t t e r n s = [

u r l (r ’ ˆ i n s e r t da t a ’ , v iews . i n s e r t d a t a) ,

u r l (r ’ ˆ insertCourseData ’ , views . i n s e r t c o u r s e d a t a) ,

u r l (r ’ ˆ$ ’ , v iews . index , name=’ index ’) ,

u r l (r ’ ˆ index ’ , views . index , name=’ index ’) ,

u r l (r ’ ˆ jobDataForm ’ , views . job data , name=’ job data ’) ,

u r l (r ’ ˆ cour s e content f o rm ’ , views . cour s e data , name=’ cour se data ’) ,

u r l (r ’ ˆ se lJobCategory ’ , v iews . j obCategory Se l ec t ,

name=’ j obCatego ry Se l e c t ’) ,

u r l (r ’ ˆ s e l e c tUn i ’ , v iews . u n i v e r s i t y S e l e c t , name=’ u n i v e r s i t y S e l e c t ’) ,

u r l (r ’ ˆ s im i l a r i t y ’ , v iews . s im i l a r i t y , name=’ s im i l a r i t y ’) ,

u r l (r ’ ˆ extractedKeywordJob ’ , views . extractedKeywordJob ,

name=’ extractedKeywordJob ’) ,

u r l (r ’ ˆ extractedKeywordUnivers i ty ’ ,

Source Code 57

views . extractedKeywordUnivers ity ,

name=’ extractedKeywordUnivers i ty ’) ,

u r l (r ’ ˆ comparison ’ , views . comparison , name=’ comparison ’) ,

]

5. Models

from django . db import models

class Univers i tyCurr icu lum (models . Model) :

universityName=models . CharField (max length=50)

deptName=models . CharField (max length=50)

courseName=models . CharField (max length=50)

courseContent=models . TextFie ld ()

courseKeyword=models . TextFie ld (nu l l=True)

def s t r (s e l f) :

return s e l f . universityName

class jobData (models . Model) :

j o bT i t l e=models . CharField (max length=70)

category=models . CharField (max length=40)

jobRequirments=models . TextFie ld ()

re latedDept=models . CharField (max length=50)

keywords=models . TextFie ld ()

Source Code 58

def s t r (s e l f) :

return s e l f . j o bT i t l e

6. Views

def s im i l a r i t y (r eque s t) :

va lue = reques t .GET. get (’ q ’ , ’ ’)

va lue2 = value . s p l i t (”−”)

i f ’ u n i v e r s i t y ’ in r eque s t . s e s s i o n :

uniName = reques t . s e s s i o n [’ u n i v e r s i t y ’]

else :

uniName1= value2 [1]

uniName = reques t . s e s s i o n [’ uniName1 ’]

i f ’ department ’ in r eque s t . s e s s i o n :

depName = reques t . s e s s i o n [’ department ’]

else :

depName1 = value2 [2]

depName = reques t . s e s s i o n [’depName1 ’]

i f ’ category ’ in r eque s t . s e s s i o n :

jobCategory = reques t . s e s s i o n [’ category ’]

else :

jobCategory1 = value2 [0]

jobCategory = reques t . s e s s i o n [’ jobCategory1 ’]

keys1 = Univers i tyCurr icu lum . ob j e c t s . f i l t e r (universityName=uniName)

. f i l t e r (deptName=depName)

Source Code 59

keys2 = jobData . ob j e c t s . f i l t e r (category=jobCategory)

keywordList1 = []

keywordList2 = []

keywordSet1 = set ()

keywordSet2 = set ()

for data in keys1 : # For Un i v e r s i t y

keywordList1 = data . courseKeyword . s p l i t ()

keywordSet1 . add (data . courseKeyword)

for item in keywordList1 :

keywordSet1 . add (item)

for data in keys2 :

keywordList2 = data . keywords . s p l i t ()

keywordSet2 . add (data . keywords)

#re la t edDep tSe t . add (data . r e l a t edDep t)

for item in keywordList2 :

keywordSet2 . add (item)

keywordSet1 = l i s t (keywordSet1)

keywordSet2 = l i s t (keywordSet2)

matchedList = []

unmatchedList = []

#Text s p l i t ()

Source Code 60

#t x t= ’ , ’ . j o i n (s t r (s) f o r s in keywordSet1)

txt = ””

for s in keywordSet1 :

txt+=s+” ” ;

patt = ””

for s in keywordSet2 :

patt+=s+” ” ;

print (patt)

pattern = patt . s p l i t ()

i f ’ t ’ in r eques t . s e s s i o n :

del r eques t . s e s s i o n [’ t ’]

i f ’ p ’ in r eques t . s e s s i o n :

del r eques t . s e s s i o n [’p ’]

r eque s t . s e s s i o n [’ t ’]= txt

r eque s t . s e s s i o n [’p ’]= pattern

for pat in pattern :

i f len (pat)!= 1 :

isMatch = False

charComparison , s h i f t , preProcessTime , searchTime ,

isMatch = preProcess Func (txt , pat)

i f isMatch == True :

matchedList . append (pat)

else :

Source Code 61

unmatchedList . append (pat)

t i t l e 1 = ”Matched Sy l l abus : ”

t i t l e 2 = ”This content s are suggested to add on your s y l l a bu s : ”

contextUniForS imi lar i tyPage = { ’matchedKey ’ : matchedList ,

’ unmatchedKey ’ : unmatchedList ,

’ pattern ’ : pattern ,

’ txt ’ : txt ,

’ t i t l e 1 ’ : t i t l e 1 ,

’ t i t l e 2 ’ : t i t l e 2

}

def i n s e r t d a t a (r eque s t) :

data = reques t .POST

jobT i t l e = data [’ j T i t l e ’]

category = data [’ catag ’]

jobRequirments = data [’ jReq ’]

re latedDept = data [’ RelatedDept ’]

jobReqTxt = data [’ jReq ’]

import n l tk

from n l tk import word token ize

Source Code 62

import os

java path = ”C:/ Program F i l e s /Java/ jdk1 . 8 . 0 60 /bin / java . exe ”

os . env i ron [’JAVAHOME’] = java path

n l tk . i n t e r n a l s . c o n f i g j a v a (’C: / Program F i l e s /Java

/ jdk1 . 8 . 0 60 /bin / java . exe ’)

from n l tk . tag import StanfordPOSTagger

j a r = ’C: / Users /Pc/PycharmProjects /new/

stanford−postagger −2016−10−31/ stanford−postagger . j a r ’

model = ’C: / Users /Pc/PycharmProjects /new/ stanford−postagger −2016−10−31

/models / eng l i sh−l e f t3words−d i s t s im . tagger ’

po s tagge r = StanfordPOSTagger (model , ja r , encoding=’ ut f8 ’)

tokens = word token ize (jobReqTxt)

tagged = pos tagge r . tag (tokens) # changed

nouns = [word for word , pos in tagged \

i f (pos == ’NNP’)] # changed

downcased = [x . lower () for x in nouns]

key1 = ’ ’ . j o i n (str (e) for e in downcased)

JobData = jobData (j obT i t l e=jobTi t l e , category=category ,

jobRequirments=jobRequirments , re latedDept=relatedDept ,

Source Code 63

keywords= key1)

JobData . save ()

return render (request , ’ educa t i on gap ana lyze r /jobDataForm . html ’)

#

#

#

#

def i n s e r t c o u r s e d a t a (r eque s t) :

courseData = reques t .POST

universityName = courseData [’UniName ’]

deptName = courseData [’DeptName ’]

courseName = courseData [’ courseName ’]

courseContent = courseData [’ courseContent ’]

try :

import n l tk

tokens = n l tk . word token ize (courseContent)

tagged = nl tk . pos tag (tokens)

nouns = [word for word , pos in tagged \

i f (pos == ’NNP’ or pos == ’NNPS ’)]

downcased = [x . lower () for x in nouns]

key1 = ’ ’ . j o i n (str (e) for e in downcased) #Str ing Convert

Source Code 64

except :

print (”Noun Extract ion Problem . ”)

un iver s i tyCurr i cu lum =Univers i tyCurr icu lum (universityName=universityName ,

deptName =deptName , courseName=courseName ,

courseContent=courseContent ,

courseKeyword=key1)

un iver s i tyCurr i cu lum . save ()

return render (request , ’ educa t i on gap ana lyze r / cour s e content f o rm . html ’)

#

#

#

#

def extractedKeywordJob (r eque s t) :

jCategory = reques t .POST. get (’ job ’)

itTelecommunicat ion = False

account ingFinance = False

eng in e e rArch i t e c t = False

medicalPharma = False

market ingSa les = False

Source Code 65

i f jCategory == ”IT&Telecommunication” :

itTelecommunicat ion = True

e l i f jCategory == ”AccountingFinance ” :

account ingFinance = True

e l i f jCategory == ”Eng ineerArch i t ec t ” :

eng in e e rArch i t e c t = True

e l i f jCategory == ”MedicalPharma” :

medicalPharma = True

e l i f jCategory == ”Market ingSales ” :

market ingSa les = True

keys = jobData . ob j e c t s . f i l t e r (category=jCategory)

keywordsSet = set ()

keywordList = []

r e la tedDeptSet = set ()

for data in keys :

keywordList = data . keywords . s p l i t ()

keywordsSet . add (data . keywords)

re la tedDeptSet . add (data . re latedDept)

for item in keywordList :

keywordsSet . add (item)

t i t l e 1 = ”Related Department : ”

t i t l e 2 = ”Extracted Keyword : ”

t i t l e 3 = ” Se l e c t ed Category : ”

Source Code 66

context= { ’ r e la tedDeptSet ’ : l i s t (re la tedDeptSet) ,

’ keywordsSet ’ : l i s t (keywordsSet) ,

’ category ’ : jCategory ,

’ i t ’ : i tTelecommunication ,

’ account ing ’ : accountingFinance ,

’ eng in e e rArch i t e c t ’ : eng inee rArch i t e c t ,

’ medicalPharma ’ : medicalPharma ,

’ market ingSa les ’ : market ingSales ,

’ t i t l e 1 ’ : t i t l e 1 ,

’ t i t l e 2 ’ : t i t l e 2 ,

’ t i t l e 3 ’ : t i t l e 3

}

return render (request , ’ educa t i on gap ana lyze r / se lJobCategory . html ’ ,

context)

#

#

#

#

def extractedKeywordUnivers i ty (r eques t) :

univ = reques t .POST. get (’ uni ’)

dept = reques t .POST. get (’ dep ’)

categ = reques t .POST. get (’ job ’)

Source Code 67

reque s t . s e s s i o n [’ u n i v e r s i t y ’] = univ

reque s t . s e s s i o n [’ department ’] = dept

r eque s t . s e s s i o n [’ category ’] = categ

keys1 = Univers i tyCurr icu lum . ob j e c t s . f i l t e r (universityName=univ)

. f i l t e r (deptName=dept)

keys2 = jobData . ob j e c t s . f i l t e r (category=categ)

keywordList1 = []

keywordList2 = []

keywordSet1 = set ()

keywordSet2 = set ()

for data in keys1 : # For Un i v e r s i t y

keywordList1 = data . courseKeyword . s p l i t ()

keywordSet1 . add (data . courseKeyword)

for item in keywordSet1 :

keywordSet1 . add (item)

for data in keys2 : # For Job

keywordList2 = data . keywords . s p l i t ()

keywordSet2 . add (data . keywords)

for item in keywordList2 :

keywordSet2 . add (item)

t i t l e 1 = ”Extracted Keyword Un ive r s i ty : ”

t i t l e 2 = ”Extracted Keyword Job : ”

Source Code 68

t i t l e 3 = ”Category : ”

contextUni= { ’ keywordSet1 ’ : l i s t (keywordSet1) ,

’ keywordSet2 ’ : l i s t (keywordSet2) ,

’ univ ’ : univ ,

’ dept ’ : dept ,

’ categ ’ : categ ,

’ t i t l e 1 ’ : t i t l e 1 ,

’ t i t l e 2 ’ : t i t l e 2 ,

’ t i t l e 3 ’ : t i t l e 3

}

return render (request , ’ educa t i on gap ana lyze r / s e l e c tUn i . html ’ ,

contextUni)

#

#

#

#

def comparison (r eques t) :

txt = ””

pattern = ””

i f ’ t ’ in r eques t . s e s s i o n :

txt = reques t . s e s s i o n [’ t ’]

i f ’ p ’ in r eques t . s e s s i o n :

pattern = reques t . s e s s i o n [’p ’]

Source Code 69

t i t l e 1 = ””

t i t l e 2 = ””

t i t l e 3 = ””

t i t l e 4 = ””

t i t l e 5 = ””

t i t l e 6 = ””

For BMF

tota lPreprocess ingTimeOur = 0

totalSearchingTimeOur = 0

to ta lSh i f tOur = 0

totalCharacterComparisonOur = 0

matchCountOur = 0

unmatchCountOur = 0

for pat in pattern :

i f len (pat) != 1 :

isMatch = False

charComparison , s h i f t , preProcessTime , searchTime ,

isMatch = preProcess Func (txt , pat)

totalCharacterComparisonOur += charComparison

to ta lSh i f tOur += s h i f t

tota lPreprocess ingTimeOur += preProcessTime

totalSearchingTimeOur += searchTime

Source Code 70

i f isMatch == True :

matchCountOur += 1

else :

unmatchCountOur += 1

totalPreprocessingTimeBM = 0

totalSearchingTimeBM = 0

totalShi f tBM = 0

totalCharacterComparisonBM = 0

matchCountBM = 0

unmatchCountBM = 0

charComparison = 0

s h i f t = 0

preProcessTime = 0

searchTime = 0

for pat in pattern :

i f len (pat) != 1 :

isMatch = False

charComparison , s h i f t , preProcessTime , searchTime ,

isMatch = BMsearch (txt , pat)

totalCharacterComparisonBM += charComparison

totalShi f tBM += s h i f t

totalPreprocessingTimeBM += preProcessTime

totalSearchingTimeBM += searchTime

Source Code 71

i f isMatch == True :

matchCountBM += 1

else :

unmatchCountBM += 1

For KMP

totalPreprocessingTimeKMP = 0

totalSearchingTimeKMP = 0

totalShiftKMP = 0

totalCharacterComparisonKMP = 0

matchCountKMP = 0

unmatchCountKMP = 0

charComparison = 0

s h i f t = 0

preProcessTime = 0

searchTime = 0

for pat in pattern :

i f len (pat) != 1 :

isMatch = False

charComparison , s h i f t , preProcessTime , searchTime ,

isMatch = KMPSearch(txt , pat)

totalCharacterComparisonKMP += charComparison

totalShiftKMP += s h i f t

totalPreprocessingTimeKMP += preProcessTime

totalSearchingTimeKMP += searchTime

i f isMatch == True :

Source Code 72

matchCountKMP += 1

else :

unmatchCountKMP += 1

contextComparsion = { ’matchCountOur ’ : matchCountOur ,

’ unmatchCountOur ’ : unmatchCountOur ,

’ searchTimeOur ’ : totalSearchingTimeOur ,

’ preprocessTimeOur ’ : totalPreprocess ingTimeOur ,

’ shi ftComparisonOur ’ : to ta lSh i f tOur ,

’ charComparisonOur ’ : totalCharacterComparisonOur ,

BM

’matchCountBM ’ : matchCountBM ,

’unmatchCountBM ’ : unmatchCountBM ,

’ searchTimeBM ’ : totalSearchingTimeBM ,

’ preprocessTimeBM ’ : totalPreprocessingTimeBM ,

’ shiftComparisonBM ’ : totalShiftBM ,

’ charComparisonBM ’ : totalCharacterComparisonBM ,

#KMP

’matchCountKMP ’ : matchCountKMP ,

’unmatchCountKMP ’ : unmatchCountKMP ,

’ searchTimeKMP ’ : totalSearchingTimeKMP ,

’ preprocessTimeKMP ’ : totalPreprocessingTimeKMP ,

’ shiftComparisonKMP ’ : totalShiftKMP ,

’ charComparisonKMP ’ : totalCharacterComparisonKMP ,

’ pattern ’ : pattern ,

’ txt ’ : txt ,

LIST OF PUBLICATIONS 73

’ t i t l e 1 ’ : t i t l e 1 ,

’ t i t l e 2 ’ : t i t l e 2 ,

’ t i t l e 3 ’ : t i t l e 3 ,

’ t i t l e 4 ’ : t i t l e 4 ,

’ t i t l e 5 ’ : t i t l e 5 ,

’ t i t l e 6 ’ : t i t l e 6

}

return render (request , ’ educa t i on gap ana lyze r / comparison . html ’ ,

contextComparsion)

Appendix B

List of Publications

International Conference Paper

1. MD. Obaidullah Al-Faruk, K. M. Akib Hussain, MD. Adnan Shahriar, Shakila

Mahjabin Tonni, (‘ ‘BFM: A Forward Backward String Matching Algorithm with

Improved Shifting for Information Retrieval”), IEEE International Conference on

Recent Trends in Computer Science and Technology, (ICRTCST-2018), Kolkata,

India, 2018.

74

