
Verification of Feature Anomalies in
Software Product Line Feature Models

Birat Saha

2014–2–60–086

Md. Fahim Shahrier Rasel

2014–2–60–088

Syed Nazmus Shakib

2014–2–60–125

A thesis submitted in partial fulfillment of the requirements for the

degree of Bachelor of Science in Computer Science and Engineering

Department of Computer Science and Engineering
East West University

Dhaka-1212, Bangladesh

April, 2018

Declaration

We, hereby, declare that the work presented in this thesis is the outcome of the inves-

tigation performed by me under the supervision of Dr. Shamim H. Ripon, Associate

Professor, Department of Computer Science and engineering, East West University. We

also declare that no part of this thesis has been or is being submitted elsewhere for the

award of any degree or diploma.

. .

Dr. Shamim H. Ripon Birat Saha

Supervisor 2014–2–60–086

. .

Md. Fahim Shahrier Rasel

2014–2–60–088

. .

Syed Nazmus Shakib

2014–2–60–125

i

Letter of Acceptance

This project entitled “Verification of Feature Anomalies in Software Product Line

Feature Models” submitted by Birat Saha (2014–2–60–086), Md. Fahim Shahrier Rasel

(2014–2–60–088) and Syed Nazmus Shakib (2014–2–60–125) to the Computer Science and

Engineering Department, East West University, Dhaka-1212, Bangladesh is accepted as

satisfactory for partial fulfillment of requirements for the degree of Bachelors of Science(B. Sc.)

in Computer Science and Engineering.

Board of Examiners

. .

Dr. Shamim H. Ripon

Associate Professor

Department of Computer Science and Engineering

East West University, Dhaka, Bangladesh

. .

Dr. Ahmed Wasif Reza

Associate Professor and Chairperson

Department of Computer Science and Engineering

East West University, Dhaka, Bangladesh

ii

Abstract

Products with new features need to be introduced on the market in a prompt step and

organizations need to speed up their development process. Reuse has been suggested as a

solution, but to achieve effective reuse within an organization a planned and preemptive

effort must be used. Software Product lines are the most promising technique and

it increases productivity and software quality and decreases time-to-market. In SPL,

a feature model shows various types of features and seizures the relationships among

them. As different configuration found in feature model it has high probability that

some configuration is not correct. There could be anomalies in feature model which

could lead invalid configuration every time. Number of rules proposed to identify those

anomalies. Some tools can identifies those anomalies. Verifying those rule with different

tools ensure that those rules are correct and universal on every tools.

iii

Acknowledgments

First of all, We would like to express our deepest gratitude to The Almighty for His

blessings on us. Next, our special thanks go to thank our thesis advisor Dr. Shamim

H. Ripon of Department of Computer Science and Engineering at East West University.

The door to his office was always open whenever we ran into a trouble spot or had a

question about our thesis. He consistently allowed this thesis to be our own work, but

steered us in the right the direction whenever he thought we needed it.

We would also like to acknowledge all of the faculty members of Department of Computer

Science and Engineering for their unconditional help and support whenever we needed

it.

Finally, we must express our very profound gratitude to our parents for providing unfail-

ing support and continuous encouragement throughout our years of study and through

the process of researching and writing this thesis. This accomplishment would not have

been possible without them. Thank you

Birat Saha

April, 2018

Md. Fahim Shahrier Rasel

April, 2018

Syed Nazmus Shakib

April, 2018

iv

Table of Contents

Declaration of Authorship i

Letter of Acceptance ii

Abstract iii

Acknowledgment iv

Table of Contents v

List of Figures vii

Chapter List of Tables x

Chapter 1 Introduction 1

1.1 Introduction . 1

1.2 Problems and Motivation . 2

1.3 Objectives . 3

1.4 Contribution . 4

1.5 Outline . 4

Chapter 2 Background 6

2.1 Software Product Line (SPL) . 6

2.2 Feature Models . 7

2.2.1 Basic Feature Models . 9

v

Table of Contents vi

2.3 Logical Representation . 11

2.3.1 Logical operators . 11

2.4 FaMa . 14

2.4.1 General Description . 15

2.5 FeatureIDE . 16

Chapter 3 Domain Model 18

3.1 Overview of CAD Domain . 18

3.2 CAD Domain Model using FODA . 20

Chapter 4 Analysis Rules 23

4.1 Introduction . 23

4.2 False Optional . 25

4.3 Dead Feature . 26

Chapter 5 Tool Implementation 28

5.1 Represent Feature Models Using FaMa . 28

5.2 FaMa GUI . 29

5.2.1 Checking Model Validity . 31

5.2.2 Products by Feature Model . 31

5.2.3 Number of Product by Feature Model 33

5.2.4 Variability of Feature Model . 33

5.2.5 Errors on Feature Model . 34

5.2.6 Error Explanation of Feature Model 35

5.2.7 Export FaMa Model to Graphical Model of FeatureIDE 37

Chapter 6 Case Study 39

6.1 Analysis Rules Verification on CAD Domain 41

6.1.1 False Optional 1 . 41

6.1.2 False Optional 2 . 42

6.1.3 Dead Feature 1 . 43

Table of Contents vii

Chapter 7 Conclusion 45

7.1 Future Work . 45

Bibliography 45

List of Figures

2.1 A Simple Feature Model . 8

3.1 Basic Operational Scenario in a CAD System for Police 19

3.2 CAD Domain Feature Model . 21

4.1 The types of Analysis Rules in Feature Model 24

4.2 False Optional 1 . 25

4.3 False Optional 2 . 26

4.4 Dead Feature 1 . 27

5.1 Simple FaMa GUI . 30

5.2 Model Validation . 31

5.3 Products by Model . 32

5.4 Number of Product by Model . 33

5.5 Variability of the Model . 34

5.6 Errors on Model . 35

5.7 Error Explanation on Model . 36

5.8 Export FaMa Model . 37

5.9 Exported Model in FeatureIDE . 38

6.1 CAD Domain Validation . 40

6.2 CAD Domain Errors . 41

6.3 Analysis of False Optional 1 in CAD . 42

6.4 Analysis of False Optional 2 in CAD . 43

viii

List of Figures ix

6.5 Analysis of Dead Feature 1 in CAD . 44

List of Tables

2.1 Logical notations for feature model . 10

2.2 Negation Operator . 11

2.3 Conjunction Operator . 12

2.4 Disjunction Operator . 12

2.5 Exclusive Or Operator . 13

2.6 Implication Operator . 14

2.7 Biconditional Operator . 14

3.1 Key entities of CAD domain . 19

x

Chapter 1

Introduction

1.1 Introduction

Designing, developing and maintaining a good software system is a challenge still in this

21st century. The approach of reusing existing good solutions for developing any new

application is now one of the central focuses of software engineers. Building software

systems from previously developed components saves cost and time of redundant work

and improves the system and its maintainability. A new software development paradigm,

software product line [1], is emerging to produce multiple systems by reusing the common

assets across the systems in the product line. However, the idea of product line is not

new. In 1976 Parnas [2] proposed modularization criteria and information hiding for

handling product line.

The increase competitiveness in the software development sector with immense economic

considerations such as cost, time to market, etc. motivates the transition from single

product development to product-line development approach. Software product line is a

set of software intensive systems sharing a common, managed set of features that satisfy

the specific needs of a particular market segment or missions and that are developed

from a common set of core assets in a prescribed way [1].

A software product line is a set of software-intensive systems sharing a common, man-

aged set of features that satisfy the specific needs of a particular market segment or

mission and that are developed from a common set of core assets in a prescribed way [1].

Core assets are the basis for software product line. The core assets often include the

architecture, reusable software components, domain models, requirements statements,

1

Chapter 1. Introduction 2

documentation and specifications, performance model, etc. Different product line mem-

bers may differ in functional and non-functional requirements, design decisions, run-time

architecture and interoperability (component structure, component invocation, synchro-

nization, and data communication), platform, etc. The product line approach integrates

two basic processes: the abstraction of the commonalities and variabilities of the prod-

ucts considered (development for reuse) and the derivation of product variants from

these abstractions (development with reuse) [3].

The main idea of software product line is to explicitly identify all the requirements that

are common to all members of the family as well as those that varies among products in

the family. This implies a huge model that help the stakeholders to be able to trace any

design choices and variability decision. A particular product is then derived by selecting

the required variants and configuring them according to the product requirements.

1.2 Problems and Motivation

Both industry and the scholarly community have indicated much enthusiasm for taking

care of product line in application domains such as business systems, avionics, command

and control systems etc. Today most of the effort in product line development are

relating to architecture, detail design and code. Basic necessities among all relatives

are anything but difficult to deal with as they just can be incorporated into the family

design and are a piece of each relative.

But problem arises from the variant requirements among family members. In a product

line, currently variants are modeled using feature diagram, inheritance, templates and

other techniques. In contrast with analysis of a solitary framework, demonstrating vari-

ations includes an additional level of intricacy to the domain analysis. In any product

line model, the same variant has occurrences in different domain model views. Differ-

ent variants have dependencies on each other. Tracing multiple occurrences in different

model views of any variant and understanding the mutual dependencies among variants

are major challenges during domain modeling. While each step in modeling variant may

Chapter 1. Introduction 3

be simple but problem arises when the volume of information grows. When the volume

of information grows the domain models become difficult to understand.

The main problems are the possible explosion of variant combinations, complex depen-

dencies among variants and difficulty in tracing variants from the domain model down

to the specification of a particular product. As feature model now used in Software

Product Line for making different configuration of same product but the anomalies in

the feature model can cause invalid configuration. In invalid configuration is used for

product development then the software will not be much helpful for customer as well as

the developer because it will cost much time and money.

Our motivation is to detect anomalies in feature model based on some rules which is

theoretically proven. To use this rule for detect anomalies in feature model we have to

verify those rule using existing tools which is used to create feature model and detect

anomalies.

1.3 Objectives

In developing product offering, the variations are to be overseen in space designing

stage, which scopes the product offering and builds up the way to quickly deliver the

individuals from the family. It fills two particular yet related needs, firstly,it can record

choices about the product in general including distinguishing the variations for every

part and furthermore, it can bolster application designing by giving legitimate data and

instrument to the required variations amid product age.

The goal of this work is to verify the existing rule which are used in detect anomalies in

feature model theoretically. Our work focuses on two specific analysis operations: false

optional and dead features of feature model. We also tried to get some new rules which

can detect and explain the anomalies in the feature model

Chapter 1. Introduction 4

1.4 Contribution

The particular emphasis of this thesis is to verify the feature anomalies in feature model.

To achieve this goal in this thesis we have made the following contributions,

– Our work is to verify the existing rule we have to convert all the rule in such format

which is compatible with verification method and tool

– We also proposed some new rules for False Optional and Dead Feature and written

its logic in First Order.

– We also verified our proposed rule using the same method we used to verified the

existing rule. We verified our rule using existing domain model.

– We developed a simple interface for a feature model tool which can be used as

verification of rules and as well to get details about the verification failure

– We extended the feature model tool by adding functionality to export its format

to use in other feature model verification tool.

1.5 Outline

The thesis is organized as follows,

Chapter 2 gives a brief overview of the Software Product Line(SPL), Feature Model,

Logical representation of feature model and Feature model tool like FaMa and Fea-

tureIDE.

Chapter 3 gives an overview of the CAD domain. We briefly describe the activities of

the domain and give an example of a Police CAD domain.

Chapter 4 introduces new rules for detection feature model anomalies with Scenarios,

Diagram and Logical representation in First Order.

Chapter 5 tells about the tools used for verification how its implemented how we convert

existing rule to compatible format and different use of the feature model tools.

Chapter 1. Introduction 5

Chapter 6 discuses about the case study of new rule in our domain model and its

verification.

Chapter 7 concludes the thesis by summarizing our work. Finally we outline our future

plan.

Chapter 2

Background

2.1 Software Product Line (SPL)

Software Product Line (SPL) is a set of related softwares, also known as software family,

where the member products of the family share some common features and each member

is characterized by their varying features [4]. The main objectives behind SPL are re

usability, time to market, increased quality [4, 5]. The common and varying features of

a SPL are arranged in model that helps the stakeholder to select their required product

feature configuration. Common requirements among all family members are easy to

handle as they simply can be integrated into the family architecture and are part of

every family member. But problem arises from the variant requirements among family

members as modeling variants adds an extra level of complexity to the domain analysis.

Thus management of variants is considered to be one of the critical areas in SPL.

Actually, Software product line (SPL) is a software intensive system sharing a common

and managed set of features that satisfy the needs of a particular market segment or

mission and that are developed from a set of core assets in a prescribed way [6]. Product

line technology is a way of improving the software development lifecycle and reuse by

providing facilities to reuse the model of the system family. By reusing rather than recre-

ating the work products of the system families, it is possible to increase the productivity

and decrease the possible errors significantly.[4] The main idea of software product line is

to explicitly identify all the activities which are common to all members of the family as

well as which are different and then arrange them in a model. This implies a huge model

which will help the stakeholders to be able to trace any design choices and variability

6

Chapter 2. Background 7

decisions as well. Finally, the derivation of the product is done by selecting the required

variants from the model and configuring them according to product requirements.

Manufacturers have long employed analogous engineering techniques to create a product

line of similar products using a common factory that assembles and configures parts

designed to be reused across the product line. For example, automotive manufacturers

can create unique variations of one car model using a single pool of carefully designed

parts and a factory specifically designed to configure and assemble those parts. The

characteristic that distinguishes software product lines from previous efforts is predic-

tive versus opportunistic software reuse. Rather than put general software components

into a library in the hope that opportunities for reuse will arise, software product lines

only call for software artifacts to be created when reuse is predicted in one or more

products in a well defined product line. Recent advances in the software product line

field have demonstrated that narrow and strategic application of these concepts can

yield order of magnitude improvements in software engineering capability. The result is

often a discontinuous jump in competitive business advantage, similar to that seen when

manufacturers adopt mass production and mass customization paradigms.

While early software product line methods at the genesis of the field provided the best

software engineering improvement metrics seen in four decades, the latest generation of

software product line methods and tools are exhibiting even greater improvements. New

generation methods are extending benefits beyond product creation into maintenance

and evolution, lowering the overall complexity of product line development, increasing

the scalability of product line portfolios, and enabling organizations to make the transi-

tion to software product line practice with orders of magnitude less time, cost and effort.

Domain and application engineering are the two main phases of SPL development [5].

2.2 Feature Models

A feature model represents the information of all possible products of a software product

line in terms of features and relationships among them. Feature models are a special

Chapter 2. Background 8

type of information model widely used in software product line engineering. A feature

model is represented as a hierarchically arranged set of features composed by:

1. relationships between a parent (or compound) feature and its child features (or

subfeatures).

2. crosstree (or crosshierarchy) constraints that are typically inclusion or exclusion

statements in the form: if feature F is included, then features A and B must also

be included (or excluded).

Figure 2.1: A Simple Feature Model

Figure 2.1 depicts a simplified feature model inspired by the mobile phone industry. The

model illustrates how features are used to specify and build software for mobile phones.

The software loaded in the phone is determined by the features that it supports. Accord-

ing to the model, all phones must include support for calls, and displaying information

in either a basic, colour or high resolution screen. Furthermore, the software for mobile

phones may optionally include support for GPS and multimedia devices such as camera,

MP3 player or both of them.

Feature models are used in different scenarios of software production ranging from model

driven development [6], feature oriented programming [7], software factories [8] or gen-

erative programming, all of them around software product line development. Although

Chapter 2. Background 9

feature models are studied in software product line engineering, these information mod-

els can be used in different contexts ranging from requirements gathering to data model

structures, hence the potential importance of feature models in the information systems

domain. The term feature model was coined by Kang et al. In the FODA report back in

1990[6] and has been one of the main topics of research in software product lines since

then. There are different feature model languages. We refer the reader to for a detailed

survey on the different feature model languages. Below, we review the most well known

notations for those languages

2.2.1 Basic Feature Models

We group as basic feature models those allowing the following relationships among fea-

tures:

• Mandatory. A child feature has a mandatory relationships with its parent when

the child is included in all products in which its parent feature appears. For

instance, every mobile phone system in our example must provide support for

calls.

• Optional. A child feature has an optional relationship with its parent when the

child can be optionally included in all products in which its parent feature appears.

In the example, software for mobile phones may optionally include support for

GPS.

• Alternative. A set of child features have an alternative relationship with their

parent when only one feature of the children can be selected when its parent feature

is part of the product. In the example, mobile phones may include support for a

basic, colour or high resolution screen but only one of them.

• Or. A set of child features have an or-relationship with their parent when one or

more of them can be included in the products in which its parent feature appears.

In Figure 1, whenever Media is selected, Camera, MP3 or both can be selected.

Chapter 2. Background 10

Type Logic Type Logic
Expression Expression

Vp

V

vp ⇔ v

Vp

V

v ⇒ vp

Mandatory Optional

Vp

V1 V2

vp ⇔ (v1 ⊕ v2)

Vp

V1 V2

(v1 ⊕ v2) ⇒ vp

Alternative Optional Alternative

Vp

V1 V2

vp ⇔ (v1 ∨ v2)

Vp

V1 V2

(v1 ∨ v2) ⇒ vp

Or Optional Or

Table 2.1: Logical notations for feature model

Notice that a child feature can only appear in a product if its parent feature does. The

root feature is a part of all the products within the software product line. In addition to

the parental relationships between features, a feature model can also contain cross-tree

constraints between features. These are typically in the form:

• Requires. If a feature A requires a feature B, the inclusion of A in a product

implies the inclusion of B in such product. Mobile phones including a camera

must include support for a high resolution screen.

• Excludes. If a feature A excludes a feature B, both features cannot be part of

the same product. GPS and basic screen are incompatible features.

More complex cross-tree relationships have been proposed later in the literature [5]

allowing constraints in the form of generic propositional formulas, e.g. A and B implies

not C.

Chapter 2. Background 11

2.3 Logical Representation

Logic has been studied since the classical Greek period (600-300BC). The Greeks,most

notably Thales, were the first to formally analyze the reasoning process. Aristotle (384-

322BC), “the father of logic”, and many other Greeks searched for universal truths that

were irrefutable. A second great period for logic came with the use of symbols to simplify

complicated logical arguments. Gottfried Leibniz (1646-1716) began this work at age

14, but failed to provide a workable foundation for symbolic logic. George Boole (1815-

1864) is considered the “father of symbolic logic”. He developed logic as an abstract

mathematical system consisting of defined terms (propositions), operations (conjunction,

disjunction, and negation), and rules for using the operations. Boole’s basic idea was

that if simple propositions could be represented by precise symbols, the relation between

the propositions could be read as precisely as an algebraic equation. Boole developed

an “algebra of logic” in which certain types of reasoning were reduced to manipulations

of symbols.

2.3.1 Logical operators

1. Negation Operator: “not”, has symbol “¬” :

Example: p: This book is interesting. Then p can be read as “This book is not

interesting”.

Truth Table:

P ¬P

T F

F T

Table 2.2: Negation Operator

The negation operator is a unary operator which, when applied to a proposition

p, changes the truth value of p. That is, the negation of a proposition p, denoted

by ¬p, is the proposition that is false when p is true and true when p is false.

Chapter 2. Background 12

2. Conjunction Operator: “and”, has symbol “∧”. Example: p: This book is

interesting.

q: I am staying at home.

p∧q: This book is interesting and I am staying at home.

Truth Table:

P Q P∧Q

T T T

T F F

F T F

F F F

Table 2.3: Conjunction Operator

The conjunction operator is the binary operator which, when applied to two propo-

sitions p and q, yields the proposition “p and q”, denoted p∧q. The conjunction

p∧q of p and q is the proposition that is true when both p and q are true and false

otherwise.

3. Disjunction Operator: inclusive “or”, has symbol “∨”. Example:

p: This book is interesting

q: I am staying at home.

p∨q: This book is interesting, or I am staying at home.

Truth Table:

P Q P∨Q

T T T

T F T

F T T

F F F

Table 2.4: Disjunction Operator

Chapter 2. Background 13

The disjunction operator is the binary operator which, when applied to two propo-

sitions p and q, yields the proposition “p or q”, denoted p∨q. The disjunction p∨q

of p and q is the proposition that is true when either p is true, q is true, or both

are true, and is false otherwise

4. Exclusive Or Operator: “xor”, has symbol ⊕.

Example:

p: This book is interesting

q: I am staying at home.

p⊕q: Either this book is interesting or I am staying at home, but not both.

Truth table:

P Q P⊕Q

T T F

T F T

F T T

F F F

Table 2.5: Exclusive Or Operator

The exclusive or is the binary operator which, when applied to two propositions p

and q yields the proposition “p xor q”, denoted p⊗q, which is true if exactly one

of p or q is true, but not both. It is false if both are true or if both are false.

5. Implication Operator:“if...then...”, has symbol “⇒” . Example:

p: This book is interesting.

q: I am staying at home.

p⇒q: If this book is interesting, then I am staying at home.

Truth Table:

The implication p⇒q is the proposition that is often read as “if p then q”. If “p

then q” is false precisely when p is true but q is false

Chapter 2. Background 14

P Q P⇒Q

T T T

T F F

F T T

F F T

Table 2.6: Implication Operator

6. Biconditional Operator: “if and only if”, has symbol “⇔” Example:

p: This book is interesting.

q: I am staying at home.

p⇔q: This book is interesting if and only if I am staying at home.

Truth table:

P Q P⇔Q

T T T

T F F

F T F

F F T

Table 2.7: Biconditional Operator

The bi-conditional statement is equivalent to (p⇒q)∧(q⇒p). In other words: For

p⇔q to be true we must have both p and q true.

2.4 FaMa

FaMa (FeAture Model Analyser) is a tool to analyse feature models. FaMa is a tool to

analyse Software Product Lines, represented as feature models. Software product line

is a recent software development paradigm, based on the principle of “customization

in mass”. But how we have presented, FaMa has uses further than analysing software

product lines strictly. FaMa can analyse any system that can be expressed as a set of

Chapter 2. Background 15

features on a hie

FAMA is an extensible framework for the automated analysis of feature models. FAMA

allows the integration of different logic representations and solvers in order to optimize

the analysis process. It can be configured to select automatically in execution time

the most efficient of the available solvers according to the operation requested by the

user. The current implementation of FAMA integrates three of the most promising logic

representations proposed in the area of the automated analysis of feature models: CSP,

SAT and BDD, but more solvers can be added if needed. The implementation is based

on an Eclipse plug in and uses XML to represent FMs so it can inter operate with other

tools that support it.

FAMA has been implemented as a complete tool for the edition and analysis of FMs.

FAMA supports cardinality- based feature modelling (that includes traditional feature

models, e.g FODA, FeatureRSEB, and so on), export/import of FMs from XML and

XMI and analysis operations on FMs. In order to make our tool multiplatform and easy

to access we implemented FAMA as a plugin for the Eclipse Platform1. In the next

sections we overview of the functionality offered by the framework and we describe some

of the most relevant design and implementation details.

2.4.1 General Description

FAMA offers two main functionalities: visual model edition/creation and automated

model analysis. Once the user has created or imported (from XML/XMI) a cardinality

based FM, the analysis capability can be used. Most of the operation identified on FMs

[6] are being currently implemented. At the moment of writing this article the operations

fully supported by FAMA are:

• Finding out if an FM is valid, i.e. it exists a a product satisfying all the constraints.

• Finding the total number of possible products of an FM (number of products).

• List all the possible products of a feature model (list of products).

Chapter 2. Background 16

• Calculate the commonality of a feature, i.e. the number of products where a feature

appears in.

FAMA integrates different solvers in order to combine the best of all of them in terms of

performance. The actual version of the framework integrates CSP 2, SAT 3 and BDD 4

Java solvers to perform the analysis tasks. However, an unlimited number of new analysis

operations and solvers could be added. One of the advantages of FAMA is the ability

to select automatically, in execution time, the most efficient solver according to the

operation requested by the user. The mapping from a FM onto the correspondent solver

is done on demand. Therefore, if the user asks for the number of possible combinations

of features of an FM the framework will select automatically the BDD solver to get it

(the most efficient known approach for this operation). The automated selection of a

solver is based on the value of some configuration parameters establishing the priority

between the available solvers for each operation. The values of these parameters were

set according to the results from a complete performance test of the solvers integrated

in the framework [8].

2.5 FeatureIDE

FeatureIDE, an open source framework of an IDE for software product line engineering

based on Feature-Oriented Software Development (FOSD) [13, 5]. FeatureIDE supports

the entire life-cycle of a product line in a coherent tool infrastructure, starting with

domain analysis and feature modeling [6], but also covering design, implementation and

maintenance with FOSD.

FeatureIDE does not only cover a single language (e.g., Jak from the AHEAD tool suite

[5]), but several languages based on the same foundation: the concept of FOSD. At the

point of writing, FeatureIDE supports a multitude of different tools including AHEAD

[5], FeatureC++ [3], FeatureHouse [2], and CIDE [9]; this way FeatureIDE supports

FOSD in many languages, including Java, C++, Haskell, C, C#, JavaCC, and XML. As

we will show, also other parts of FeatureIDE are opened up for extensions, which makes

Chapter 2. Background 17

it possible to extend FeatureIDE further, either toward specific needs in an industrial

setting or to showcase research results in a full IDE and make them quickly available to

users in academia and industry (as in [16]).

We envision FeatureIDE as open source project that provides a broad foundation, but

that can be used and extended by different parties to teach and productively use FOSD.

In this demonstration, we give an overview of FeatureIDEs design and present recent

developments on the background of current software product line projects.

Chapter 3

Domain Model

Our Domain Model is based on the Computer Aided Dispatch System (CAD) domain.

We consider this domain as our case study because we have got supporting documents

of this domain from the company who is working on this domain and also working in

collaboration with our research team. Several research works have already been done on

different aspects of this domain which help to gain better knowledge of this domain. An

overview of the Computer Aided Dispatch System (CAD) and its basic domain model

is presented in this chapter.

3.1 Overview of CAD Domain

A Computer Aided Dispatch system (CAD) is a mission-critical system that is used by

police, fire and rescue, health service, port operation, taxi booking and others. However,

the basic operational scenarios are similar in all the CAD systems. Figure 3.1 depicts a

basic operational scenario and roles in a CAD system.

When an incident is happened in a place a Caller reports the incident to the command

and control center of the police unit. A Call Taker in the command and control center

captures the details about the incident and the Caller, and creates a task for the incident.

There is a Dispatcher in the system whose task is to dispatch resources to handle any

incident. The system shows the Dispatcher a list of un-dispatched tasks. The Dispatcher

examines the situation, selects suitable Resources (e.g. police units) and dispatches them

to execute the task. The Resources carry out the task instructions and report to the Task

Manager. The Task Manager monitors the situation and at the end when the resources

finished the task- closes the task. Different CAD members have different resources and

18

Chapter 3. Domain Model 19

Figure 3.1: Basic Operational Scenario in a CAD System for Police

tasks for their system. The key entities of CAD domain will interact with each other

according to the system requirements. For example, some resources are free of charge

(e.g. police) whereas some are not (e.g. taxi). The basic key entities of CAD domain

are listed in Table 3.1.

Key Definitions

Task A task holds together the information regarding a particular incident

(incident location, type, priority, urgency, status, caller’s detail etc).

Two separate entities are included within it - incident’s detail and caller

detail.

Resource A resource handles the task. In police CAD, the resource would be police

car, in taxi CAD, the resource would be taxi. It is presumed that the

resources are equipped with necessary hardware to communicate with

CAD system.

Command Command instructs the resources to complete a task. The person who

is responsible for dispatching task to resources sends the command.

Table 3.1: Key entities of CAD domain

At the basic operational level, all CAD systems are similar; basically they support

Chapter 3. Domain Model 20

the dispatcher units to handle the incidents. However, there are differences across the

CAD systems. The specific context of operation results in many variations on the basic

operational theme. Here are some of the variants identified in CAD domain: then

call taker informs the dispatcher of the newly created task but if merged then without

informing to dispatcher he/she can dispatch resources directly to the incidents.

Validation of caller and task information differs across CAD systems. In some CAD

systems basic validation (i.e., checking the completeness of caller information and the

task information) is sufficient while in other CAD systems validation includes duplicate

task checking, etc. in yet other CAD systems no validation is required at all.

Un-dispatched task selection rule in certain situation at any given time there might be

more than one task to be dispatched, then there is a need to decide which task will

dispatched next. A number of algorithms are available for this purpose and different

CAD system use different algorithm. In Ambulance CAD system task may be selected

based on task urgency or priority whereas in taxi system different algorithm will be

applied.

This simple description of CAD variants hints us about numerous variants and variant

dependencies, which focus the importance of managing them properly.

3.2 CAD Domain Model using FODA

Modeling variants is an important process during designing software product line. The

feature oriented domain analysis (FODA) method was developed at the Software En-

gineering Institute (SEI) [7]. FODA focuses on identifying features that characterize

a domain. Features are user visible aspects or characteristics of a system and are or-

ganized into And/Or graph in order to identify the commonalities and variants of the

application domain. Feature modeling is an integral part of the FODA method and the

Feature Oriented Domain Reuse Method (FORM) [9]. The commonalities and variants

within features are exploited to create a set of models that is used to implement any

member product of that family.

Chapter 3. Domain Model 21

Features are represented in graphical form as trees. The internal nodes of a tree repre-

sent the variants and their leaves represent values of corresponding variants. Graphical

symbols are used to indicate the categories of features. The root node of a feature

tree always represents the domain whose features are modeled. The remaining nodes

represent features which are classified into three types:

• Mandatory features are always part of the system.

• Optional features may be selected as a part of the system if their parent feature is

in the system. The decision whether an optional feature is part of the system or

not can be made independently from the selection of other features.

• Alternative features of a variant are related to each other as exclusive-or relation-

ship, i.e. exactly one feature out of a set of features is to be selected.

Figure 3.2: CAD Domain Feature Model

The feature diagram depicts the classification of mandatory features and variant fea-

tures as well as their dependencies. Mandatory features are those which are present in

all products in the respective domain. Variant features appear only some members of

the domain which differentiate one product from others. There are more relationships

Chapter 3. Domain Model 22

between features. One is Or-feature by [10], which connects a set of optional features

with a parent feature, either common or variant. The meaning is that whenever the

parent feature is selected then at least one of the optional features will be selected. Fea-

ture diagram also depicts the interdependencies among the variants which describes the

selection of one variant depends on the selection of the dependency connected variants.

A partial CAD feature diagram is given in the Figure 5.1. In this feature diagram the

root represents the functional features of CAD. Task Assignment Rule, Call Taker &

Dispatcher Roles and Validation are linked to the root via mandatory link as these are

mandatory features of CAD. However, Checking Duplicate Task is linked via optional

link as this feature is optional. We use extensions described in [10].

Chapter 4

Analysis Rules

4.1 Introduction

With the increasing nature of number of features in a feature model the potential com-

plexity incorporated with the analysis of the model is becoming a task of extensive

hardship. The additional level of complexity is making the analysis task error-prone [11]

and, hence, number of defects may get introduced at the modeling stage. Therefore,

care need to be taken in constructing a feature model so that the model represents the

domain precisely. However, correct modeling of the domain is a critical task [12] and

identification of the defects at the proper stage of the software development life cycle is a

prerequisite of developing valid software that fulfills all the requirements of stakeholders.

Defects found is a SPL feature model has been termed as anomalies. In order to de-

tect and correct inconsistencies as well as redundancies addressing these anomalies by

exploiting intelligent techniques and tools has been suggested by many experts [12, 13].

In our work we carry out on twp specific types of anomalies namely False Optional and

Dead Feature.

False Optional: A feature becomes a false optional (FO) feature when it has been

defined as an optional feature but it is selected for all the valid products.

Dead Feature: A feature becomes a dead feature (DF) when it has been defined as an

optional feature but it is never selected for any of the valid products.

For defining the rules we use following predicates.

• variation point(v): This predicate indicates that feature v has one or more child

feature(s).

23

Chapter 4. Analysis Rules 24

Figure 4.1: The types of Analysis Rules in Feature Model

• mandatory variant(v, x): This predicate indicates that feature x is a manda-

tory child of feature v.

• optional variant(v, x): This predicate indicates that feature x is an optional

child of feature v.

• requires(x, y): This predicates indicates that x requires y to be selected for a

valid product.

• excludes(x, y): This predicates indicates that x excludes y from being selected

for a valid product.

• cardinality(G, k, m, n): This predicate indicates G is a group cardinality with

total number of features k, lower bound m and upper bound n.

• parent feature(G, f): This predicate indicates f is the parent feature in the

group cardinality G.

• child features(G, a,, d): This predicate indicates that a,., d are the child fea-

tures of the parent under the group cardinality G.

Chapter 4. Analysis Rules 25

• dead features(a,, d): This predicate indicates that feature a,, d are dead fea-

tures.

• false optional(a,, d): This predicate indicates that feature a,, d are false op-

tional features.

• select(x): This predicate indicates the selection of feature x.

4.2 False Optional

Rule 1. An optional feature become false optional when a mandatory feature require

it’s child feature that is also optional.

In the Figure 4.2 x is a mandatory feature which requires an optional feature z where

z is the descendant of y which is also optional. As mandatory feature x requires z this

results both y and z false optional feature.

Figure 4.2: False Optional 1

∀v, x, y, z · variation point(v) ∧mandatory variant(v, x) ∧ optional variant(v, y)

∧ variation point(y) ∧ mandatory variant(y, z) ∧ requires(x, z)

∧ select(x)⇒ select(z) ∧ select(y)

Rule 2. An optional feature become false optional when a mandatory feature

require it’s child which is mandatory feature.

Chapter 4. Analysis Rules 26

In the Figure 4.3 x is a mandatory feature which requires an optional feature z where z

is the descendant of y which is mandatory feature. As mandatory feature x requires z

this results y as a false optional feature.

Figure 4.3: False Optional 2

∀v, x, y, z · variation point(v) ∧mandatory variant(v, x) ∧ optional variant(v, y)

∧ variation point(y) ∧ optional variant(y, z) ∧ requires(x, z)

∧ select(x)⇒ select(z) ∧ select(y)

4.3 Dead Feature

Rule 1. An optional feature and its child become dead when one of its child is mandatory

and excluded by a mandatory feature

In the Figure 4.4 x is a mandatory feature which requires an mandatory feature z where

z is the descendant of y which is an optional feature. As mandatory feature x requires

z this makes y dead and this results y and all of its child as a dead feature.

∀v, x, y, z · variation point(v) ∧mandatory variant(v, x) ∧ optional variant(v, y)

∧ variation point(y) ∧ mandatory variant(y, z) ∧ excludes(x, z)

∧ select(x)⇒ ¬select(y) ∧ ¬select(z)

Chapter 4. Analysis Rules 27

Figure 4.4: Dead Feature 1

Chapter 5

Tool Implementation

5.1 Represent Feature Models Using FaMa

FaMa accepts two input file formats for models: xml and plain text. For our work we

selected plain text format. Feature Model Format (FMF) is a plain text format where

we can define standard or extended feature models.

a feature model is very similar to a tree. It has a root, and except this node (feature since

now), every feature has a parent. Each feature may have three types of relationships

with their children:

• Mandatory relationship (1 to 1): if parent is present in a product, child must be

too

• Optional relationship (1 to 1): if parent is present in a product, child may be or

not.

• Group relationship (1 to n)

– Set relationship: if parent is present in a product, one (and only one) child

must be present.

– Or relationship: if parent is present in a product, one or more children must

be present.

– Cardinality-based relationship: if a parent is present in a product, user can

define how many children must be present.

Moreover, there is a special type of relationship between non parent-child nodes. These

28

Chapter 5. Tool Implementation 29

relationships, called Cross Tree Constraints, are from one feature to another feature (1

to 1). There are two types:

• Excludes: if A excludes B, B and A cant be at the same time in a product.

• Requires: if A requires B, if feature A is present in a product, feature B must be

too

For basic models, FaMa have two sections. In %Relationships, we define tree structure

and relationships types. First defined feature is the root of the feature model. Any

feature after colon is a child of the feature before the colon. Name of the feature can

contain letters and “ ” character. Mandatory relationship is the default one. Optional

can be specified with the feature between brackets [], and group relationships with

cardinality and a set of features ([n,m]FeatA FeatB...).

We can define cross-tree-constraints too in %Constraints section (REQUIRES and EX-

CLUDES among features) Basic models have .fm or .fmf file extension. We can use

these extensions to avoid errors when using FaMa. Here an example of basic feature

model in this notation.

%R e l a t i o n sh i p s

HIS : SUPERVISION SYSTEM CONTROL [SERVICES] ;

SUPERVISION SYSTEM: FIRE INTRUSION [FLOOD] ;

CONTROL: LIGHT CONTROL [APPLIANCES CONTROL] TEMPERATURE;

SERVICES : [1 , 2] {VIDEO INTERNET} ;

INTERNET: [1 , 1] {POWER LINE ADSL WIRELESS} ;

%Const ra in t s

LIGHT CONTROL EXCLUDES POWER LINE;

5.2 FaMa GUI

FaMa standalone API provides and implements several analysis operations on feature

models. FaMa can analyze any system that can be expressed as a set of feature on a

Chapter 5. Tool Implementation 30

hierarchy, with or without attributes. Some of FaMa’s operations are:

• Validation

• Products

• Number of Product

• Variability

• Error Detection

• Error Explanations

FaMa provides a shell front-end to final users, and three ways to integrate application

with FaMa: a java standalone version, a SOAP/WSDL web service, and a set of OSGi

bundles. We used java standalone version in our FaMa GUI.

Figure 5.1: Simple FaMa GUI

In Figure 5.1 we can see the Simple FaMa GUI interface. In the interface we can see

the GUI has Rule Editor Output box and the operations Combo Box where we can see

all the operation offered by this tool. There also has two button for selecting the Rule

File(*.fm) and for exporting the model to FeatureIDE model.

Chapter 5. Tool Implementation 31

5.2.1 Checking Model Validity

Checks the feature model validity. It checks if the feature model is not empty, or other

words, it has at least one product.

Figure 5.2: Model Validation

If we input the Rule for HIS(Home Integration System) from the section 5.1 in the tool

and check for validity. The tool will correctly identified that this is valid.

5.2.2 Products by Feature Model

Generates all valid products of the feature model.

Chapter 5. Tool Implementation 32

Figure 5.3: Products by Model

If we input the Rule of HIS from section 5.1 in the rule editor we can check all the

valid products configuration of HIS. For HIS domain we can see there are 24 products

can be configured. All the configuration is valid and all 24 product is an individual

product. Using this tool we can also see which feature we need to select for valid

product configuration. By generating products from model we can also see if there has

some defects in existing configured product.

Chapter 5. Tool Implementation 33

5.2.3 Number of Product by Feature Model

Calculate total number of valid product of the feature model.

Figure 5.4: Number of Product by Model

One of the questions to be answered is how many potential products a FM contains.

This is a key question in SPL engineering because if the number of products increases

the SPL becomes more flexible as well as more complex. From Figure 5.4 we can see

how many products we can configured by HIS model from 5.1. Sometimes we don’t need

to see all the valid product configuration but we need to see how many valid products

we can generate. For this case number of product is very important. Total number of

product counts all valid configuration of the products.

5.2.4 Variability of Feature Model

Calculates variability degree of the feature model

Chapter 5. Tool Implementation 34

Figure 5.5: Variability of the Model

As mentioned previously, feature models are composed of a set of features and relations

among them. If relations restrict the number of products to only one, we are considering

the lowest variability while a feature model defining no possible product would be con-

sidered a non-valid model. On the other hand, considering no relations, the number of

products within the feature model would be the highest. This case would represent the

highest variability. Relations restrict the number of potential products, so variability

depends on relation types.

5.2.5 Errors on Feature Model

Looks for errors on feature model

Chapter 5. Tool Implementation 35

Figure 5.6: Errors on Model

Form Figure 5.6 we can see that if we give the model in our tool we can find the

error/defects of the model. From previous we know that there are two kind of defects

in the feature model one is False Optional and other one is Dead Feature. A feature

becomes false optional when that feature will always picked for all valid configurations.

And a feature becomes Dead feature when a optional feature always unselected for all

valid configuration.

5.2.6 Error Explanation of Feature Model

If a feature model has errors, this operation will look for proper explanation for the

errors.

Chapter 5. Tool Implementation 36

Figure 5.7: Error Explanation on Model

From Figure 5.7 we can see the error as well as the reason. If we input the HIS model

rule from section 5.1 we can see the defects as well as the the reason behind the error.

It’s very important to find the defects because if we find the defects on the early stage

of software requirement then we can minimize failure cost.

Chapter 5. Tool Implementation 37

5.2.7 Export FaMa Model to Graphical Model of FeatureIDE

FaMa feature model can be exported as graphical feature model of FeatureIDE and then

visual configure the model.

Figure 5.8: Export FaMa Model

The exported model will be shown in FeatureIDE like Figure 5.9. The export model

we used is native to FeatureIDE. The exported model is XML file when we copy this

model.xml file in FeatureIDE. In the visual model we can see that V is the parent and X

and Y is the child where X is the mandatory feature and Y is the optional feature and

X excludes Y. So Y becomes dead feature here. By exporting the model we can visually

see all the defects and we can also select all the valid configuration.

Chapter 5. Tool Implementation 38

Figure 5.9: Exported Model in FeatureIDE

Chapter 6

Case Study

In this thesis we tried to verify the existing rules of the feature model using tools like

FaMa and FeatureIDE. Our CAD Domain Figure 3.2 in Fama format

%R e l a t i o n sh i p s

CAD: TASK ASSIGNMENT CALL TAKER DISPATCHER VALIDATION [DUPLICATE TASK] ;

TASK ASSIGNMENT: LOCATION TASK OPERATOR PRIORITY;

OPERATOR: DISPATCHER CALL TAKER;

CALL TAKER DISPATCHER: [1 , 2] {MERGED SEPARATED} ;

VALIDATION: BASIC [ADVANCED] ;

DUPLICATE TASK: [1 , 1] {DUPLICATE CHECK NOT CHECK} ;

%Const ra in t s

CALL TAKER REQUIRES MERGED;

BASIC EXCLUDES DUPLICATE CHECK;

If we check this using our tool we will find the model is valid. Error does not always make

the model invalid. Error in model will make the configuration for specific combination

invalid. Total number of configuration will be reduce because error in model makes

configuration invalid.

39

Chapter 6. Case Study 40

Figure 6.1: CAD Domain Validation

but the model has some error like False Optional and Dead Feature. As from Figure 6.2

we found that CAD Domain has three error two of them is False Optional and other

one is Dead Feature. MERGED and NOT CHECK are the False Optional feature and

DUPLICATE CHECK is the Dead feature.

Chapter 6. Case Study 41

Figure 6.2: CAD Domain Errors

6.1 Analysis Rules Verification on CAD Domain

6.1.1 False Optional 1

For verifying the False Optional feature of analysis rule shown in 4.2 we have to modify

the CAD Domain for make this scenario. So the CAD Domain modified Fama Format

will be:

%R e l a t i o n sh i p s

CAD: TASK ASSIGNMENT CALL TAKER DISPATCHER VALIDATION [DUPLICATE TASK] ;

TASK ASSIGNMENT: LOCATION TASK OPERATOR PRIORITY;

OPERATOR: DISPATCHER CALL TAKER;

CALL TAKER DISPATCHER: [1 , 2] {MERGED SEPARATED} ;

VALIDATION: BASIC [ADVANCED] ;

DUPLICATE TASK: [DUPLICATE CHECK] [NOT CHECK] ;

%Const ra in t s

BASIC REQUIRES DUPLICATE CHECK;

Chapter 6. Case Study 42

If we check for the error in our tools we will found that DUPLICATE TASK and DU-

PLICATE CHECK become False Optional by analysis rule False Optional 1.

Figure 6.3: Analysis of False Optional 1 in CAD

In Figure 6.3 we verified that analysis rule False Option 1 is correct.

6.1.2 False Optional 2

For verifying the False Optional feature of analysis rule shown in 4.3 we have to modify

the CAD Domain for make this scenario. So the CAD Domain modified Fama Format

will be:

%R e l a t i o n sh i p s

CAD: TASK ASSIGNMENT CALL TAKER DISPATCHER VALIDATION [DUPLICATE TASK] ;

TASK ASSIGNMENT: LOCATION TASK OPERATOR PRIORITY;

OPERATOR: DISPATCHER CALL TAKER;

CALL TAKER DISPATCHER: [1 , 2] {MERGED SEPARATED} ;

VALIDATION: BASIC [ADVANCED] ;

DUPLICATE TASK: DUPLICATE CHECK [NOT CHECK] ;

%Const ra in t s

Chapter 6. Case Study 43

BASIC REQUIRES DUPLICATE CHECK;

If we check for the error in our tools we will found that DUPLICATE TASK become

False Optional by analysis rule False Optional 2.

Figure 6.4: Analysis of False Optional 2 in CAD

In Figure 6.4 we verified that analysis rule False Option 2 is correct.

6.1.3 Dead Feature 1

For verifying the Dead feature of analysis rule shown in 4.4 we have to modify the CAD

Domain for make this scenario. So the CAD Domain modified Fama Format will be:

%R e l a t i o n sh i p s

CAD: TASK ASSIGNMENT CALL TAKER DISPATCHER VALIDATION [DUPLICATE TASK] ;

TASK ASSIGNMENT: LOCATION TASK OPERATOR PRIORITY;

OPERATOR: DISPATCHER CALL TAKER;

CALL TAKER DISPATCHER: [1 , 2] {MERGED SEPARATED} ;

VALIDATION: BASIC [ADVANCED] ;

DUPLICATE TASK: DUPLICATE CHECK [NOT CHECK] ;

Chapter 6. Case Study 44

%Const ra in t s

BASIC EXCLUDES DUPLICATE CHECK;

If we check for the error in our tools we will found that DUPLICATE TASK, DUPLI-

CATE CHECK and NOT CHECK become Feature by analysis rule Dead Feature 1.

Figure 6.5: Analysis of Dead Feature 1 in CAD

In Figure 6.5 we verified that analysis rule Dead Feature 1 is correct.

Chapter 7

Conclusion

Successful development of software product line requires appropriate organization and

management of products requirements. In feature model, when the volume of informa-

tion grows the possible of feature model anomalies is high. In this thesis we proposed

some feature analysis rule for feature model and tried to verify existing and proposed

software product line feature analysis rules. we developed a tool to verify the feature

models and for doing other operations. In the tool we also implemented a method to

export the model in such format which is compatible with other feature model analysis

tools.

7.1 Future Work

We only analyzed False Optional and Dead Feature in feature model. In Future we will

extend our research to verify cardinality rules also. Our developed a tool which can

export FaMa feature model to other feature model analysis tool however our tools is

now only limited for generating 2-3 level of feature model. In our feature work we will

updated the tool which can export n-Level of feature model and support new feature

model analysis tool.

45

Bibliography

[1] Software product lines: practices and patterns. Boston, MA, USA: Addison-Wesley

Longman Publishing Co., Inc., 2001.

[2] D. L. Parnas, “Software fundamentals,” D. M. Hoffman and D. M. Weiss, Eds.

Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2001, ch. On

the design and development of program families, pp. 193–213. [Online]. Available:

http://dl.acm.org/citation.cfm?id=376584.376628

[3] A. Hein, J. MacGregor, and S. Thiel, “Configuring software product line features,”

in Proceedings of the ECOOP 2001 Workshop on Feature Interaction in Composed

Systems (FICS 2001), Budapest, Hungary, June 18-22, 2001.

[4] P. C. Clements and L. Northrop, Software Product Lines: Practices and Patterns,

ser. SEI Series in Software Engineering. Addison-Wesley, August 2001.

[5] J. Bosch, Design and use of software architectures: adopting and evolving a product-

line approach. New York, NY, USA: ACM Press/Addison-Wesley Publishing Co.,

2000.

[6] K. Czarnecki, S. She, and A. Wasowski, “Sample spaces and feature models: There

and back again,” Software Product Line Conference, International, vol. 0, pp. 22–31,

2008.

[7] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson, “Feature-

oriented domain analysis (foda) feasibility study,” Carnegie-Mellon University Soft-

ware Engineering Institute, Tech. Rep., November 1990.

46

BIBLIOGRAPHY 47

[8] P. Trinidad, D. Benavides, A. Durán, A. Ruiz-Cortés, and M. Toro, “Automated

error analysis for the agilization of feature modeling,” J. Syst. Softw., vol. 81, no. 6,

pp. 883–896, Jun. 2008.

[9] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh, “Form: A feature-

oriented reuse method with domain-specific reference architectures,” Ann. Softw.

Eng., vol. 5, pp. 143–168, Jan. 1998.

[10] K. Czarnecki and U. W. Eisenecker, Generative programming: methods, tools, and

applications. New York, NY, USA: ACM Press/Addison-Wesley Publishing Co.,

2000.

[11] A. Felfernig, D. Benavides, J. A. Galindo, and F. Reinfrank, “Towards Anomaly

Explanation in Feature Models,” in Proceedings of the 15th International Configu-

ration Workshop, Vienna, Austria, August 29-30, 2013.

[12] D. Benavides, S. Segura, and A. R. Cortés, “Automated analysis of feature models

20 years later: A literature review,” Inf. Syst., vol. 35, no. 6, pp. 615–636, 2010.

[13] T. von der Massen and H. Lichter, “Deficiencies in Feature Models,” in Workshop on

Software Variability Management for Product Derivation - Towards Tool Support,

T. Mannisto and J. Bosch, Eds., 2004.

